99 research outputs found

    The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells

    Get PDF
    Carbon nanotubes (CNT) are high aspect ratio nanoparticles with diameters in the nanometre range but lengths extending up to hundreds of microns. The structural similarities between CNT and asbestos have raised concern that they may pose a similar inhalation hazard. Recently CNT have been shown to elicit a length-dependent, asbestos-like inflammatory response in the pleural cavity of mice, where long fibres caused inflammation but short fibres did not. However the cellular mechanisms governing this response have yet to be elucidated. This study examined the in vitro effects of a range of CNT for their ability to stimulate the release of the acute phase cytokines; IL-1β, TNFα, IL-6 and the chemokine, IL-8 from both Met5a mesothelial cells and THP-1 macrophages. Results showed that direct exposure to CNT resulted in significant cytokine release from the macrophages but not mesothelial cells. This pro-inflammatory response was length dependent but modest and was shown to be a result of frustrated phagocytosis. Furthermore the indirect actions of the CNT were examined by treating the mesothelial cells with conditioned media from CNT-treated macrophages. This resulted in a dramatic amplification of the cytokine release from the mesothelial cells, a response which could be attenuated by inhibition of phagocytosis during the initial macrophage CNT treatments. We therefore hypothesise that long fibres elicit an inflammatory response in the pleural cavity via frustrated phagocytosis in pleural macrophages. The activated macrophages then stimulate an amplified pro-inflammatory cytokine response from the adjacent pleural mesothelial cells. This mechanism for producing a pro-inflammatory environment in the pleural space exposed to long CNT has implications for the general understanding of fibre-related pleural disease and design of safe nanofibres

    Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma

    Get PDF
    The unique hazard posed to the pleural mesothelium by asbestos has engendered concern in potential for a similar risk from high aspect ratio nanoparticles (HARN) such as carbon nanotubes. In the course of studying the potential impact of HARN on the pleura we have utilised the existing hypothesis regarding the role of the parietal pleura in the response to long fibres. This review seeks to synthesise our new data with multi-walled carbon nanotubes (CNT) with that hypothesis for the behaviour of long fibres in the lung and their retention in the parietal pleura leading to the initiation of inflammation and pleural pathology such as mesothelioma. We describe evidence that a fraction of all deposited particles reach the pleura and that a mechanism of particle clearance from the pleura exits, through stomata in the parietal pleura. We suggest that these stomata are the site of retention of long fibres which cannot negotiate them leading to inflammation and pleural pathology including mesothelioma. We cite thoracoscopic data to support the contention, as would be anticipated from the preceding, that the parietal pleura is the site of origin of pleural mesothelioma. This mechanism, if it finds support, has important implications for future research into the mesothelioma hazard from HARN and also for our current view of the origins of asbestos-initiated pleural mesothelioma and the common use of lung parenchymal asbestos fibre burden as a correlate of this tumour, which actually arises in the parietal pleura

    Bounds on SCFTs from Conformal Perturbation Theory

    Full text link
    The operator product expansion (OPE) in 4d (super)conformal field theory is of broad interest, for both formal and phenomenological applications. In this paper, we use conformal perturbation theory to study the OPE of nearly-free fields coupled to SCFTs. Under fairly general assumptions, we show that the OPE of a chiral operator of dimension Δ=1+ϵ\Delta = 1+\epsilon with its complex conjugate always contains an operator of dimension less than 2Δ2 \Delta. Our bounds apply to Banks-Zaks fixed points and their generalizations, as we illustrate using several examples.Comment: 36 pages; v2: typos fixed, minor change

    Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been suggested that carbon nanotubes might conform to the fibre pathogenicity paradigm that explains the toxicities of asbestos and other fibres on a continuum based on length, aspect ratio and biopersistence. Some types of carbon nanotubes satisfy the first two aspects of the fibre paradigm but only recently has their biopersistence begun to be investigated. Biopersistence is complex and requires <it>in vivo </it>testing and analysis. However durability, the chemical mimicking of the process of fibre dissolution using <it>in vitro </it>treatment, is closely related to biopersistence and more readily determined. Here, we describe an experimental process to determine the durability of four types of carbon nanotubes in simulated biological fluid (Gambles solution), and their subsequent pathogenicity <it>in vivo </it>using a mouse model sensitive to inflammogenic effects of fibres. The <it>in vitro </it>and <it>in vivo </it>results were compared with well-characterised glass wool and asbestos fibre controls.</p> <p>Results</p> <p>After incubation for up to 24 weeks in Gambles solution, our control fibres were recovered at percentages consistent with their known <it>in vitro </it>durabilities and/or <it>in vivo </it>persistence, and three out of the four types of carbon nanotubes tested (single-walled (CNT<sub>SW</sub>) and multi-walled (CNT<sub>TANG2</sub>, CNT<sub>SPIN</sub>)) showed no, or minimal, loss of mass or change in fibre length or morphology when examined by electron microscopy. However, the fourth type [multi-walled (CNT<sub>LONG1</sub>)] lost 30% of its original mass within the first three weeks of incubation, after which there was no further loss. Electron microscopy of CNT<sub>LONG1 </sub>samples incubated for 10 weeks confirmed that the proportion of long fibres had decreased compared to samples briefly exposed to the Gambles solution. This loss of mass and fibre shortening was accompanied by a loss of pathogenicity when injected into the peritoneal cavities of C57Bl/6 mice compared to fibres incubated briefly. CNT<sub>SW </sub>did not elicit an inflammogenic effect in the peritoneal cavity assay used here.</p> <p>Conclusions</p> <p>These results support the view that carbon nanotubes are generally durable but may be subject to bio-modification in a sample-specific manner. They also suggest that pristine carbon nanotubes, either individually or in rope-like aggregates of sufficient length and aspect ratio, can induce asbestos-like responses in mice, but that the effect may be mitigated for certain types that are less durable in biological systems. Results indicate that durable carbon nanotubes that are either short or form tightly bundled aggregates with no isolated long fibres are less inflammogenic in fibre-specific assays.</p

    Efficacy of Simple Short-Term in Vitro Assays for Predicting the Potential of Metal Oxide Nanoparticles to Cause Pulmonary Inflammation

    Get PDF
    Background: There has been concern regarding risks from inhalation exposure to nanoparticles (NPs). The large number of particles requiring testing means that alternative approaches to animal testing are needed. Objectives: We set out to determine whether short-term in vitro assays that assess intrinsic oxidative stress potential and membrane-damaging potency of a panel of metal oxide NPs can be used to predict their inflammogenic potency. Methods: For a panel of metal oxide NPs, we investigated intrinsic free radical generation, oxidative activity in an extracellular environment, cytotoxicity to lung epithelial cells, hemolysis, and inflammation potency in rat lungs. All exposures were carried out at equal surface area doses. Results: Only nickel oxide (NiO) and alumina 2 caused significant lung inflammation when instilled into rat lungs at equal surface area, suggesting that these two had extra surface reactivity. We observed significant free radical generation with 4 of 13 metal oxides, only one of which was inflammogenic. Only 3 of 13 were significantly hemolytic, two of which were inflammogenic. Conclusions: Potency in generating free radicals in vitro did not predict inflammation, whereas alumina 2 had no free radical activity but was inflammogenic. The hemolysis assay was correct in predicting the proinflammatory potential of 12 of 13 of the particles examined. Using a battery of simple in vitro tests, it is possible to predict the inflammogenicity of metal oxide NPs, although some false-positive results are likely. More research using a larger panel is needed to confirm the efficacy and generality of this approach for metal oxide NPs

    Assessment of the Physicochemical Properties of Chrysotile-Containing Brake Debris Pertaining to Toxicity

    Get PDF
    Grinding and drilling of chrysotile asbestos-containing brake pads during the 20thcentury led torelease of chrysotile, resulting in varying levels of workplace exposures of mechanics. Despite expo-sures, excess risk of mesothelioma remains in doubt.Objectives:The toxicity of particulates is primarily derived through a combination of physicochemicalproperties and dose and as such this study aimed to determine properties of asbestos-containingbrake debris (BD) which may influence pathogenicity and potential of mesothelioma.Materials and Methods:Chrysotile-containing brake pads were ground–to reflect occupational activ-ities, aerosolized, and size-fractionated to isolate respirable fractions. Analysis of morphology, biodur-ability, surface charge, and interactions with macrophages were undertaken.Results:The respirable fraction of BD contained15–17% free chrysotile fibers thereby constituting asmall but relevant potential long fiber dose. Acellular biodurability studies showed rapid dissolutionand fragmentation of chrysotile fibers that was consistent for pure chrysotile control and BD samples.Conclusions:The long, free, respirable chrysotile fibers were present in BD, yet were of low bio-dur-ability; incubation in artificial lysosomal fluid led to destruction of free fibers

    A Hybrid Higgs

    Get PDF
    We construct composite Higgs models admitting a weakly coupled Seiberg dual description. We focus on the possibility that only the up-type Higgs is an elementary field, while the down-type Higgs arises as a composite hadron. The model, based on a confining SQCD theory, breaks supersymmetry and electroweak symmetry dynamically and calculably. This simultaneously solves the \mu/B_\mu problem and explains the smallness of the bottom and tau masses compared to the top mass. The proposal is then applied to a class of models where the same confining dynamics is used to generate the Standard Model flavor hierarchy by quark and lepton compositeness. This provides a unified framework for flavor, supersymmetry breaking and electroweak physics. The weakly coupled dual is used to explicitly compute the MSSM parameters in terms of a few microscopic couplings, giving interesting relations between the electroweak and soft parameters. The RG evolution down to the TeV scale is obtained and salient phenomenological predictions of this class of "single-sector" models are discussed.Comment: 56 pages, 7 figures, v2: discussion on FCNCs and references added, v3: JHEP versio
    corecore