124 research outputs found

    Indicators of breast cancer severity and appropriateness of surgery based on hospital administrative data in the Lazio Region, Italy

    Get PDF
    BACKGROUND: Administrative data can serve as an easily available source for epidemiological and evaluation studies. The aim of this study is to evaluate the use of hospital administrative data to determine breast cancer severity and the appropriateness of surgical treatment. METHODS: the study population consisted of 398 patients randomly selected from a cohort of women hospitalized for first-time breast cancer surgery in the Lazio Region, Italy. Tumor severity was defined in three different ways: 1) tumor size; 2) clinical stage (TNM); 3) severity indicator based on HIS data (SI). Sensitivity, specificity, and positive predictive value (PPV) of the severity indicator in evaluating appropriateness of surgery were calculated. The accuracy of HIS data was measured using Kappa statistic. RESULTS: Most of 387 cases were classified as T1 and T2 (tumor size), more than 70% were in stage I or II and the SI classified 60% of cases in medium-low category. Variation from guidelines indications identified under and over treatments. The accuracy of the SI to predict under-treatment was relatively good (58% of all procedures classified as under-treatment using pT where also classified as such using SI), and even greater predicting over-treatment (88.2% of all procedures classified as over treatment using pT where also classified as such using SI). Agreement between clinical chart and hospital discharge reports was K = 0.35. CONCLUSION: Our findings suggest that administrative data need to be used with caution when evaluating surgical appropriateness, mainly because of the limited ability of SI to predict tumor size and the questionable quality of HIS data as observed in other studies

    The Role of Individual Variables, Organizational Variables and Moral Intensity Dimensions in Libyan Management Accountants’ Ethical Decision Making

    Get PDF
    This study investigates the association of a broad set of variables with the ethical decision making of management accountants in Libya. Adopting a cross-sectional methodology, a questionnaire including four different ethical scenarios was used to gather data from 229 participants. For each scenario, ethical decision making was examined in terms of the recognition, judgment and intention stages of Rest’s model. A significant relationship was found between ethical recognition and ethical judgment and also between ethical judgment and ethical intention, but ethical recognition did not significantly predict ethical intention—thus providing support for Rest’s model. Organizational variables, age and educational level yielded few significant results. The lack of significance for codes of ethics might reflect their relative lack of development in Libya, in which case Libyan companies should pay attention to their content and how they are supported, especially in the light of the under-development of the accounting profession in Libya. Few significant results were also found for gender, but where they were found, males showed more ethical characteristics than females. This unusual result reinforces the dangers of gender stereotyping in business. Personal moral philosophy and moral intensity dimensions were generally found to be significant predictors of the three stages of ethical decision making studied. One implication of this is to give more attention to ethics in accounting education, making the connections between accounting practice and (in Libya) Islam. Overall, this study not only adds to the available empirical evidence on factors affecting ethical decision making, notably examining three stages of Rest’s model, but also offers rare insights into the ethical views of practising management accountants and provides a benchmark for future studies of ethical decision making in Muslim majority countries and other parts of the developing world

    Up-regulation of brain-derived neurotrophic factor in primary afferent pathway regulates colon-to-bladder cross-sensitization in rat

    Get PDF
    Background In humans, inflammation of either the urinary bladder or the distal colon often results in sensory cross-sensitization between these organs. Limited information is known about the mechanisms underlying this clinical syndrome. Studies with animal models have demonstrated that activation of primary afferent pathways may have a role in mediating viscero-visceral cross-organ sensitization. Methods Colonic inflammation was induced by a single dose of tri-nitrobenzene sulfonic acid (TNBS) instilled intracolonically. The histology of the colon and the urinary bladder was examined by hematoxylin and eosin (H&E) stain. The protein expression of transient receptor potential (TRP) ion channel of the vanilloid type 1 (TRPV1) and brain-derived neurotrophic factor (BDNF) were examined by immunohistochemistry and/or western blot. The inter-micturition intervals and the quantity of urine voided were obtained from analysis of cystometrograms. Results At 3 days post TNBS treatment, the protein level of TRPV1 was increased by 2-fold (p \u3c 0.05) in the inflamed distal colon when examined with western blot. TRPV1 was mainly expressed in the axonal terminals in submucosal area of the distal colon, and was co-localized with the neural marker PGP9.5. In sensory neurons in the dorsal root ganglia (DRG), BDNF expression was augmented by colonic inflammation examined in the L1 DRG, and was expressed in TRPV1 positive neurons. The elevated level of BDNF in L1 DRG by colonic inflammation was blunted by prolonged pre-treatment of the animals with the neurotoxin resiniferatoxin (RTX). Colonic inflammation did not alter either the morphology of the urinary bladder or the expression level of TRPV1 in this viscus. However, colonic inflammation decreased the inter-micturition intervals and decreased the quantities of urine voided. The increased bladder activity by colonic inflammation was attenuated by prolonged intraluminal treatment with RTX or treatment with intrathecal BDNF neutralizing antibody. Conclusion Acute colonic inflammation increases bladder activity without affecting bladder morphology. Primary afferent-mediated BDNF up-regulation in the sensory neurons regulates, at least in part, the bladder activity during colonic inflammation

    Haldane's rule in the 21st century

    Get PDF
    Haldane's Rule (HR), which states that 'when in the offspring of two different animal races one sex is absent, rare, or sterile, that sex is the heterozygous (heterogametic) sex', is one of the most general patterns in speciation biology. We review the literature of the past 15 years and find that among the similar to 85 new studies, many consider taxa that traditionally have not been the focus for HR investigations. The new studies increased to nine, the number of 'phylogenetically independent' groups that comply with HR. They continue to support the dominance and faster-male theories as explanations for HR, although due to increased reliance on indirect data (from, for example, differential introgression of cytoplasmic versus chromosomal loci in natural hybrid zones) unambiguous novel results are rare. We further highlight how research on organisms with sex determination systems different from those traditionally considered may lead to more insight in the underlying causes of HR. In particular, haplodiploid organisms provide opportunities for testing specific predictions of the dominance and faster X chromosome theory, and we present new data that show that the faster-male component of HR is supported in hermaphrodites, suggesting that genes involved in male function may evolve faster than those expressed in the female function. Heredity (2011) 107, 95-102; doi:10.1038/hdy.2010.170; published online 12 January 201

    Transmission Shifts Underlie Variability in Population Responses to Yersinia pestis Infection

    Get PDF
    Host populations for the plague bacterium, Yersinia pestis, are highly variable in their response to plague ranging from near deterministic extinction (i.e., epizootic dynamics) to a low probability of extinction despite persistent infection (i.e., enzootic dynamics). Much of the work to understand this variability has focused on specific host characteristics, such as population size and resistance, and their role in determining plague dynamics. Here, however, we advance the idea that the relative importance of alternative transmission routes may vary causing shifts from epizootic to enzootic dynamics. We present a model that incorporates host and flea ecology with multiple transmission hypotheses to study how transmission shifts determine population responses to plague. Our results suggest enzootic persistence relies on infection of an off-host flea reservoir and epizootics rely on transiently maintained flea infection loads through repeated infectious feeds by fleas. In either case, early-phase transmission by fleas (i.e., transmission immediately following an infected blood meal) has been observed in laboratory studies, and we show that it is capable of driving plague dynamics at the population level. Sensitivity analysis of model parameters revealed that host characteristics (e.g., population size and resistance) vary in importance depending on transmission dynamics, suggesting that host ecology may scale differently through different transmission routes enabling prediction of population responses in a more robust way than using either host characteristics or transmission shifts alone

    Transgenerational Effects of Heavy Metal Pollution on Immune Defense of the Blow Fly Protophormia terraenovae

    Get PDF
    Recently environmental conditions during early parental development have been found to have transgenerational effects on immunity and other condition-dependent traits. However, potential transgenerational effects of heavy metal pollution have not previously been studied. Here we show that direct exposure to heavy metal (copper) upregulates the immune system of the blow fly, Protophormia terraenovae, reared in copper contaminated food. In the second experiment, to test transgenerational effects of heavy metal, the parental generation of the P. terraenovae was reared in food supplemented with copper, and the immunocompetence of their offspring, reared on uncontaminated food, was measured. Copper concentration used in this study was, in the preliminary test, found to have no effect on mortality of the flies. Immunity was tested on the imago stage by measuring encapsulation response against an artificial antigen, nylon monofilament. We found that exposure to copper during the parental development stages through the larval diet resulted in immune responses that were still apparent in the next generation that was not exposed to the heavy metal. We found that individuals reared on copper-contaminated food developed more slowly compared with those reared on uncontaminated food. The treatment groups did not differ in their dry body mass. However, parental exposure to copper did not have an effect on the development time or body mass of their offspring. Our study suggests that heavy metal pollution has positive feedback effect on encapsulation response through generations which multiplies the harmful effects of heavy metal pollution in following generations

    Regulatory T Cells in the Pathogenesis and Healing of Chronic Human Dermal Leishmaniasis Caused by Leishmania (Viannia) Species

    Get PDF
    The immune inflammatory response is a double edged sword. During infectious diseases, regulatory T cells can prevent eradication of the pathogen but can also limit inflammation and tissue damage. We investigated the role of regulatory T cells in chronic dermal leishmaniasis caused by species of the parasite Leishmania that are endemic in South and Central America. We found that although individuals with chronic lesions have increased regulatory T cells in their blood and at skin sites where immune responses to Leishmania were taking place compared to infected individuals who do not develop disease, their capacity to control the inflammatory response to Leishmania was inferior. However, healing of chronic lesions at the end of treatment was accompanied by an increase in the number and capacity of regulatory T cells to inhibit the function of effector T cells that mediate the inflammatory response. Different subsets of regulatory T cells, defined by the expression of molecular markers, were identified during chronic disease and healing, supporting the participation of distinct regulatory T cells in the development of disease and the control of inflammation during the healing response. Immunotherapeutic strategies may allow these regulatory T cell subsets to be mobilized or mitigated to achieve healing

    Secondary Metabolites of Marine Microbes: From Natural Products Chemistry to Chemical Ecology

    Get PDF
    Marine natural products (MNPs) exhibit a wide range of pharmaceutically relevant bioactivities, including antibiotic, antiviral, anticancer, or anti-inflammatory properties. Besides marine macroorganisms such as sponges, algae, or corals, specifically marine bacteria and fungi have shown to produce novel secondary metabolites (SMs) with unique and diverse chemical structures that may hold the key for the development of novel drugs or drug leads. Apart from highlighting their potential benefit to humankind, this review is focusing on the manifold functions of SMs in the marine ecosystem. For example, potent MNPs have the ability to exile predators and competing organisms, act as attractants for mating purposes, or serve as dye for the expulsion or attraction of other organisms. A large compilation of literature on the role of MNPs in marine ecology is available, and several reviews evaluated the function of MNPs for the aforementioned topics. Therefore, we focused the second part of this review on the importance of bioactive compounds from crustose coralline algae (CCA) and their role during coral settlement, a topic that has received less attention. It has been shown that certain SMs derived from CCA and their associated bacteria are able to induce attachment and/or metamorphosis of many benthic invertebrate larvae, including globally threatened reef-building scleractinian corals. This review provides an overview on bioactivities of MNPs from marine microbes and their potential use in medicine as well as on the latest findings of the chemical ecology and settlement process of scleractinian corals and other invertebrate larvae

    Brain energy rescue:an emerging therapeutic concept for neurodegenerative disorders of ageing

    Get PDF
    The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner — a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes
    corecore