824 research outputs found

    Evaluating the environmental impact of crude glycerol purification derived from biodiesel production: A comparative life cycle assessment study

    Get PDF
    In recent decades, surplus crude glycerol has been generated in large amounts as a waste product of biodiesel production, leading to bottlenecks in the supply chain of the biodiesel industry. This waste glycerol represents an important potential renewable feedstock and platform chemical; however, its purification is often needed for further processing. Advancements towards glycerol purification are being made using sustainable purification techniques aimed at improving the biodiesel industry's environmental footprint. Many studies focussing on various techniques to purify glycerol can be found in the literature; however, very few studies to evaluate the environmental impacts of the purification processes have been reported. This paper provides a critical investigation on the cradle-to-gate life cycle assessment (LCA) of three different processes for purifying crude glycerol, namely, physicochemical treatment and membrane purification (PMP) processes, vacuum distillation purification (VDP) processes and ion exchange purification (IEP) processes having a functional unit (FU) of 1000 kg of purified glycerol. These purification processes were modelled using Aspen plus software v12.1 in combination with Super Pro Designer v13. CCaLC2 (Carbon Calculations over the Life Cycle of Industrial Activities) was used to measure the environmental impacts associated with each process. By following the ISO 14044:2006 methodology and utilising the CCaLC2 tool, seven different types of potential environmental impacts have been investigated, which include carbon footprint, water footprint, acidification, eutrophication, ozone layer depletion, photochemical smog and human toxicity. Sensitivity analysis of the LCA was carried out using the response surface method (RSM) to determine the most effective parameter within the LCA. The total carbon footprint of the PMP, VDP and IEP processes are 3466.82, 1745.72 and 2239.71 kg CO2 eq. FU−1 respectively. The LCA study determined that waste generated as a result of crude glycerol impurities from the three processes had one of the highest environmental impacts on the overall process. For the PMP and IEP processes, the raw materials used in the physicochemical treatment also contribute significantly to the carbon footprint and other environmental impacts. Lastly, aspects concerning the environmental impacts from the PMP glycerol purification process have been addressed by analysing the raw materials from different sources accompanied by altered waste disposal methods (i.e. the incineration of generated wastes as opposed to landfilling) in an attempt to reduce the overall environmental impacts. For the PMP process, which has the highest carbon footprint, usage of differently sourced raw materials and altered waste disposal treatments resulted in 39% reduction in total carbon footprint and 54% reduction in the total ozone layer depletion. Sensitivity analysis of the LCA shows that the glycerol content within the crude glycerol was the most significant parameter

    Cricket, migration and diasporic communities

    Get PDF
    Ever since different communities began processes of global migration, sport has been an integral feature in how we conceptualise and experience the notion of being part of a diaspora. Sport provides diasporic communities with a powerful means for creating transnational ties, but also shapes ideas of their ethnic and racial identities. In spite of this, theories of diaspora have been applied sparingly to sporting discourses. Due mainly to its central role in spreading dominant white racial narratives within the British Empire, and the various ways different ethnic groups have ‘played’ with the meanings and associations of the sport in the (post-)colonial period, cricket is an interesting focus for academic research. Despite W.G. Grace’s claim that cricket advances civilisation by promoting a common bond, binding together peoples of vastly different backgrounds, to this day cricket operates strict symbolic boundaries; defining those who do, and equally, do not belong. C.L.R. James’ now famous metaphor of looking ‘beyond the boundary’ captures the belief that, to fully understand the significance of cricket, and the sport’s roles in changing and shaping society, one must consider the wider social and political contexts within which the game is played. The collection of papers in this special issue does just that. Cricket acts as the point of departure in each, but the way in which ideas of power, representation and inequality are ‘played out’ is unique in each

    I Wouldn\u27t Know Where To Start : Perspectives From Clinicians, Agency Leaders, and Autistic Adults on Improving Community Mental Health Services for Autistic Adults

    Get PDF
    Most autistic adults struggle with mental health problems, and traditional mental health services generally do not meet their needs. This study used qualitative methods to identify ways to improve community mental health services for autistic adults for treatment of their co-occurring psychiatric conditions. We conducted semistructured, open-ended interviews with 22 autistic adults with mental healthcare experience, 44 community mental health clinicians, and 11 community mental health agency leaders in the United States. The participants identified clinician-, client-, and systems-level barriers and facilitators to providing quality mental healthcare to autistic adults. Across all three stakeholder groups, most of the reported barriers involved clinicians’ limited knowledge, lack of experience, poor competence, and low confidence working with autistic adults. All three groups also discussed the disconnect between the community mental health and developmental disabilities systems, which can result in autistic adults being turned away from services when they contact the mental health division and disclose their autism diagnosis during the intake process. Further efforts are needed to train clinicians to work more effectively with autistic adults and to increase coordination between the mental health and developmental disabilities systems

    Quantitative trait loci for sensitivity to ethanol intoxication in a C57BL/6J × 129S1/SvImJ inbred mouse cross

    Get PDF
    Individual variation in sensitivity to acute ethanol (EtOH) challenge is associated with alcohol drinking and is a predictor of alcohol abuse. Previous studies have shown that the C57BL/6J (B6) and 129S1/SvImJ (S1) inbred mouse strains differ in responses on certain measures of acute EtOH intoxication. To gain insight into genetic factors contributing to these differences, we performed quantitative trait locus (QTL) analysis of measures of EtOH-induced ataxia (accelerating rotarod), hypothermia, and loss of righting reflex (LORR) duration in a B6 × S1 F2 population. We confirmed that S1 showed greater EtOH-induced hypothermia (specifically at a high dose) and longer LORR compared to B6. QTL analysis revealed several additive and interacting loci for various phenotypes, as well as examples of genotype interactions with sex. QTLs for different EtOH phenotypes were largely non-overlapping, suggesting separable genetic influences on these behaviors. The most compelling main-effect QTLs were for hypothermia on chromosome 16 and for LORR on chromosomes 4 and 6. Several QTLs overlapped with loci repeatedly linked to EtOH drinking in previous mouse studies. The architecture of the traits we examined was complex but clearly amenable to dissection in future studies. Using integrative genomics strategies, plausible functional and positional candidates may be found. Uncovering candidate genes associated with variation in these phenotypes in this population could ultimately shed light on genetic factors underlying sensitivity to EtOH intoxication and risk for alcoholism in humans

    The comparision of glybenclamide and metformin-loaded bacterial cellulose/gelatin nanofibres produced by a portable electrohydrodynamic gun for diabetic wound healing

    Get PDF
    Wound dressings made from natural polymers are an important aspect of biomaterials. Protein-based materials are less likely to instigate an immunogenic response and have the capacity to degrade in vivo, also without triggering an inflammatory response. Therefore, gelatin (GEL) was chosen and combined with bacterial cellulose (BC) to produce nanofibres and the potential of an all-natural polymer construct was determined. GEL and BC were successfully electrospun with metformin (Met) and glybenclamide (Gb) using a portable, point of need electrospinning set up. The virgin fibre group exhibited a significant effect on the proliferation of L929 (mouse fibroblast) cells but all fibre samples can safely be applied on wound site without risk of cytotoxicity. According to the results obtained by animal tests, the GEL-BC-Gb group showed better recovery than the GEL-BC-Met group. Diabetic wounds treated with GEL-BC-Met were characterized by moderate re-epithelialization and partially organized granulation tissue. Moderate to complete re-epithelialization and well-formed granulation tissue were observed in diabetic wounds treated with GEL-BC-Gb. The histologic scores obtained on day 14 confirmed that the GEL-BC-Gb group played a stronger wound-healing role compared to the GEL-BC-Met group. The highest decrease of TNF-α level was observed in the GEL-BC-Gb group at the end of the experiment but there is no significant difference between drug-loaded fibre groups. Therefore, topical administration of Met and Gb in a sustained release form has a high potential for diabetic wound healing with high bioavailability and fewer systemic side effects but Gb showed better improvement according to the results of the animal tests

    Reviewing research evidence and the case of participation in sport and physical recreation by black and minority ethnic communities

    Get PDF
    The paper addresses the implications of using the process of systematic review in the many areas of leisure where there is a dearth of material that would be admitted into conventional Cochrane Reviews. This raises important questions about what constitutes legitimate knowledge, questions that are of critical import not just to leisure scholars, but to the formulation of policy. The search for certainty in an area that lacks conceptual consensus results in an epistemological imperialism that takes a geocentric form. While clearly, there is a need for good research design whatever the style of research, we contend that the wholesale rejection of insightful research is profligate and foolhardy. A mechanism has to be found to capitalise on good quality research of whatever form. In that search, we draw upon our experience of conducting a review of the material available on participation in sport and physical recreation by people from Black and minority ethnic groups. The paper concludes with a proposal for a more productive review process that makes better use of the full panoply of good quality research available. © 2012 © 2012 Taylor & Francis

    Preferential regulation of stably expressed genes in the human genome suggests a widespread expression buffering role of microRNAs

    Get PDF
    In this study, we comprehensively explored the stably expressed genes (SE genes) and fluctuant genes (FL genes) in the human genome by a meta-analysis of large scale microarray data. We found that these genes have distinct function distributions. miRNA targets are shown to be significantly enriched in SE genes by using propensity analysis of miRNA regulation, supporting the hypothesis that miRNAs can buffer whole genome expression fluctuation. The expression-buffering effect of miRNA is independent of the target site number within the 3'-untranslated region. In addition, we found that gene expression fluctuation is positively correlated with the number of transcription factor binding sites in the promoter region, which suggests that coordination between transcription factors and miRNAs leads to balanced responses to external perturbations

    Complete chloroplast genome sequence of Holoparasite Cistanche Deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from Its host Haloxylon Ammodendron (Chenopodiaceae)

    Get PDF
    The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants. The authors report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae

    Single-cell immune profiling reveals markers of emergency myelopoiesis that distinguish severe from mild respiratory syncytial virus disease in infants

    Get PDF
    Whereas most infants infected with respiratory syncytial virus (RSV) show no or only mild symptoms, an estimated 3 million children under five are hospitalized annually due to RSV disease. This study aimed to investigate biological mechanisms and associated biomarkers underlying RSV disease heterogeneity in young infants, enabling the potential to objectively categorize RSV-infected infants according to their medical needs. Immunophenotypic and functional profiling demonstrated the emergence of immature and progenitor-like neutrophils, proliferative monocytes (HLA-DRLow, Ki67+), impaired antigen-presenting function, downregulation of T cell response and low abundance of HLA-DRLow B cells in severe RSV disease. HLA-DRLow monocytes were found as a hallmark of RSV-infected infants requiring hospitalization. Complementary transcriptomics identified genes associated with disease severity and pointed to the emergency myelopoiesis response. These results shed new light on mechanisms underlying the pathogenesis and development of severe RSV disease and identified potential new candidate biomarkers for patient stratification

    Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control

    Get PDF
    DNA replication stress is a source of genomic instability. Here we identify ​changed mutation rate 1 (​Cmr1) as a factor involved in the response to DNA replication stress in Saccharomyces cerevisiae and show that ​Cmr1—together with ​Mrc1/​Claspin, ​Pph3, the chaperonin containing ​TCP1 (CCT) and 25 other proteins—define a novel intranuclear quality control compartment (INQ) that sequesters misfolded, ubiquitylated and sumoylated proteins in response to genotoxic stress. The diversity of proteins that localize to INQ indicates that other biological processes such as cell cycle progression, chromatin and mitotic spindle organization may also be regulated through INQ. Similar to ​Cmr1, its human orthologue ​WDR76 responds to proteasome inhibition and DNA damage by relocalizing to nuclear foci and physically associating with CCT, suggesting an evolutionarily conserved biological function. We propose that ​Cmr1/​WDR76 plays a role in the recovery from genotoxic stress through regulation of the turnover of sumoylated and phosphorylated proteins
    corecore