55 research outputs found

    Targeted sequencing for high-resolution evolutionary analyses following genome duplication in salmonid fish:Proof of concept for key components of the insulin-like growth factor axis

    Get PDF
    Acknowledgements This study was funded by a Natural Environment Research Council grant (NERC, project code: NBAF704). FML is funded by a NERC Doctoral Training Grant (Project Reference: NE/L50175X/1). RLS was an undergraduate student at the University of Aberdeen and benefitted from financial support from the School of Biological Sciences. DJM is indebted to Dr. Steven Weiss (University of Graz, Austria), Dr. Takashi Yada (National Research Institute of Fisheries Science, Japan), Dr. Robert Devlin (Fisheries and Oceans Canada, Canada), Prof. Samuel Martin (University of Aberdeen, UK), Mr. Neil Lincoln (Environment Agency, UK) and Prof. Colin Adams/Mr. Stuart Wilson (University of Glasgow, UK) for providing salmonid material or assisting with its sampling. We are grateful to staff at the Centre for Genomics Research (University of Liverpool, UK) (i.e. NERC Biomolecular Analysis Facility – Liverpool; NBAF-Liverpool) for performing sequence capture/Illumina sequencing and providing us with details on associated methods that were incorporated into the manuscript. Finally, we are grateful to the organizers of the Society of Experimental Biology Satellite meeting 'Genome-powered perspectives in integrative physiology and evolutionary biology' (held in Prague, July 2015) for inviting us to contribute to this special edition of Marine Genomics and hosting a really stimulating meeting.Peer reviewedPublisher PD

    Re-evaluation of blood mercury, lead and cadmium concentrations in the Inuit population of Nunavik (Québec): a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arctic populations are exposed to mercury, lead and cadmium through their traditional diet. Studies have however shown that cadmium exposure is most often attributable to tobacco smoking. The aim of this study is to examine the trends in mercury, lead and cadmium exposure between 1992 and 2004 in the Inuit population of Nunavik (Northern QuĂ©bec, Canada) using the data obtained from two broad scale health surveys, and to identify sources of exposure in 2004.</p> <p>Methods</p> <p>In 2004, 917 adults aged between 18 and 74 were recruited in the 14 communities of Nunavik to participate to a broad scale health survey. Blood samples were collected and analysed for metals by inductively coupled plasma mass spectrometry, and dietary and life-style characteristics were documented by questionnaires. Results were compared with data obtained in 1992, where 492 people were recruited for a similar survey in the same population.</p> <p>Results</p> <p>Mean blood concentration of mercury was 51.2 nmol/L, which represent a 32% decrease (p < 0.001) between 1992 and 2004. Mercury blood concentrations were mainly explained by age (partial r<sup>2 </sup>= 0.20; p < 0.0001), and the most important source of exposure to mercury was marine mammal meat consumption (partial r<sup>2 </sup>= 0.04; p < 0.0001). In 2004, mean blood concentration of lead was 0.19 ÎŒmol/L and showed a 55% decrease since 1992. No strong associations were observed with any dietary source, and lead concentrations were mainly explained by age (partial r<sup>2 </sup>= 0.20.; p < 0.001). Blood cadmium concentrations showed a 22% decrease (p < 0.001) between 1992 and 2004. Once stratified according to tobacco use, means varied between 5.3 nmol/L in never-smokers and 40.4 nmol/L in smokers. Blood cadmium concentrations were mainly associated with tobacco smoking (partial r<sup>2 </sup>= 0.56; p < 0.0001), while consumption of caribou liver and kidney remain a minor source of cadmium exposure among never-smokers.</p> <p>Conclusion</p> <p>Important decreases in mercury, lead and cadmium exposure were observed. Mercury decrease could be explained by dietary changes and the ban of lead cartridges use likely contributed to the decrease in lead exposure. Blood cadmium concentrations remain high and, underscoring the need for intensive tobacco smoking prevention campaigns in the Nunavik population.</p

    Well-Annotated microRNAomes Do Not Evidence Pervasive miRNA Loss

    Get PDF
    microRNAs are conserved noncoding regulatory factors implicated in diverse physiological and developmental processes in multicellular organisms, as causal macroevolutionary agents and for phylogeny inference. However, the conservation and phylogenetic utility of microRNAs has been questioned on evidence of pervasive loss. Here, we show that apparent widespread losses are, largely, an artefact of poorly sampled and annotated microRNAomes. Using a curated data set of animal microRNAomes, we reject the view that miRNA families are never lost, but they are rarely lost (92% are never lost). A small number of families account for a majority of losses (1.7% of families account for >45% losses), and losses are associated with lineages exhibiting phenotypic simplification. Phylogenetic analyses based on the presence/absence of microRNA families among animal lineages, and based on microRNA sequences among Osteichthyes, demonstrate the power of these small data sets in phylogenetic inference. Perceptions of widespread evolutionary loss of microRNA families are due to the uncritical use of public archives corrupted by spurious microRNA annotations, and failure to discriminate false absences that occur because of incomplete microRNAome annotation
    • 

    corecore