14 research outputs found

    The Benefits Conferred by Radial Access for Cardiac Catheterization Are Offset by a Paradoxical Increase in the Rate of Vascular Access Site Complications With Femoral Access The Campeau Radial Paradox

    Get PDF
    AbstractObjectivesThe purpose of this study was to assess whether the benefits conferred by radial access (RA) at an individual level are offset by a proportionally greater incidence of vascular access site complications (VASC) at a population level when femoral access (FA) is performed.BackgroundThe recent widespread adoption of RA for cardiac catheterization has been associated with increased rates of VASCs when FA is attempted.MethodsLogistic regression was used to calculate the adjusted VASC rate in a contemporary cohort of consecutive patients (2006 to 2008) where both RA and FA were used, and compared it with the adjusted VASC rate observed in a historical control cohort (1996 to 1998) where only FA was used. We calculated the adjusted attributable risk to estimate the proportion of VASC attributable to the introduction of RA in FA patients of the contemporary cohort.ResultsA total of 17,059 patients were included. At a population level, the VASC rate was higher in the overall contemporary cohort compared with the historical cohort (adjusted rates: 2.91% vs. 1.98%; odds ratio [OR]: 1.48, 95% confidence interval [CI]: 1.17 to 1.89; p = 0.001). In the contemporary cohort, RA patients experienced fewer VASC than FA patients (adjusted rates: 1.44% vs. 4.19%; OR: 0.33, 95% CI: 0.23 to 0.48; p < 0.001). We observed a higher VASC rate in FA patients in the contemporary cohort compared with the historical cohort (adjusted rates: 4.19% vs. 1.98%; OR: 2.16, 95% CI: 1.67 to 2.81; p < 0.001). This finding was consistent for both diagnostic and therapeutic catheterizations separately. The proportion of VASCs attributable to RA in the contemporary FA patients was estimated at 52.7%.ConclusionsIn a contemporary population where both RA and FA were used, the safety benefit associated with RA is offset by a paradoxical increase in VASCs among FA patients. The existence of this radial paradox should be taken into consideration, especially among trainees and default radial operators

    Climbing the Alps in a warming world: Perspective of climate change impacts on high mountain areas influences alpinists' behavioural adaptations

    Get PDF
    International audienceClimate change is having a major impact on high mountain areas, with glacier retreat and permafrost warming. Alpinism is deeply affected by this changing environment, which increases the technicality of the routes, their dangers, and the uncertainty of the periods of suitable climbing conditions during the summer. This raises the question of how recreational alpinists perceive and adapt to changing conditions. To answer this question, this paper reports the results of a quantitative social media survey of European alpinists based on the substitutability theory. The results from the 1071 completed questionnaires show that climate change and its impacts are clearly observed and identified by recreational alpinists; the higher the awareness of the changes, the more likely they are to engage in adaptation behaviours such as temporal, activity and spatial substitution, and informational coping. Furthermore, the more respondents perceive that climate change is affecting their practice in terms of degraded routes, increased risk, or increased frequency and magnitude of rockfalls, the more they engage in adaptation behaviours. Although adaptation seems to be sufficient to ensure satisfactory practice conditions, the development of communication for less informed alpinists, as well as the development of climate services, could be valuable to ensure sustainable and safe practices. Management implications: Recreational alpinists' awareness of the impacts of climate change on alpinism increases their adoption of substitution and coping behaviours. The results highlight the importance for alpine organisations to communicate research on high mountain changes, especially to novice or occasional alpinists who may be less informed. The results also suggest the importance of high mountain climate services to support decision making. This could include proposing maps and topographical guides that specifically show how climate change will affect the most frequently used routes, or developing indicators such as the Rockfall Susceptibility Index

    Long-term assessment of the CALIPSO Imaging Infrared Radiometer (IIR) calibration and stability through simulated and observed comparisons with MODIS/Aqua and SEVIRI/Meteosat

    No full text
    International audienceThe quality of the calibrated radiances of the medium-resolution Imaging Infrared Radiometer (IIR) on-board the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite is quantitatively evaluated from the beginning of the mission in June 2006. Two complementary "relative" and "stand-alone" approaches are used, which are related to comparisons of measured brightness temperatures and to model-to-observations comparisons, respectively. In both cases, IIR channels 1 (8.65 ”m), 2 (10.6 ”m), and 3 (12.05 ”m) are paired with the Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua Collection 5 "companion" channels 29, 31, and 32, respectively, as well as with the Spinning Enhanced Visible and Infrared Imager (SEVIRI)/Meteosat companion channels IR8.7, IR10.8, and IR12, respectively. These pairs were selected before launch to meet radiometric, geometric, and space-time constraints. The prelaunch studies were based on simulations and sensitivity studies using the 4A/OP radiative transfer model and the more than 2300 atmospheres of the climatological Thermodynamic Initial Guess Retrieval (TIGR) input dataset further sorted into five air mass types. Using data from over 9.5 years of on-orbit operation, and following the relative approach technique, collocated measurements of IIR and of its companion channels have been compared at all latitudes over ocean, during day and night, and for all types of scenes in a wide range of brightness temperatures. The relative approach shows an excellent stability of IIR2–MODIS31 and IIR3–MODIS32 brightness temperature differences (BTDs) since launch. A slight trend within the IIR1–MODIS29 BTD, that equals −0.02 K yr−1 on average over 9.5 years, is detected when using the relative approach at all latitudes and all scene temperatures. For very cold scene temperatures (190–200 K) in the tropics, each IIR channel is warmer than its MODIS companion channel by 1.6 K on average. For the stand-alone approach, clear sky measurements only are considered, which are directly compared with simulations using 4A/OP and collocated ERA-Interim (ERA-I) reanalyses. The clear sky mask is derived from collocated observations from IIR and the CALIPSO lidar. Simulations for clear sky pixels in the tropics reproduce the differences between IIR1 and MODIS29 within 0.02 K and between IIR2 and MODIS31 within 0.04 K, whereas IIR3–MODIS32 is larger than simulated by 0.26 K. The stand-alone approach indicates that the trend identified from the relative approach originates from MODIS29, whereas no trend (less than ±0.004 K yr−1) is identified for any of the IIR channels. Finally, using the relative approach, a year-by-year seasonal bias between nighttime and daytime IIR–MODIS BTD was found at mid-latitude in the Northern Hemisphere. It is due to a nighttime IIR bias as determined by the stand-alone approach, which originates from a calibration drift during day-to-night transitions. The largest bias is in June and July when IIR2 and IIR3 are warmer by 0.4 K on average, and IIR1 is warmer by 0.2 K

    Cryptographic and Physical Zero-Knowledge Proof Systems for Solutions of Sudoku Puzzles

    No full text
    Abstract We consider cryptographic and physical zero-knowledge proof schemes for Sudoku, a popularcombinatorial puzzle. We discuss methods that allow one party, the prover, to convince another party, the verifier, that the prover has solved a Sudoku puzzle, without revealing the solutionto the verifier. The question of interest is how a prover can show: (i) that there is a solution to the given puzzle, and (ii) that he knows the solution, while not giving away any informationabout the solution to the verifier
    corecore