13 research outputs found

    Extended-spectrum ÎČ-lactamase-producing Escherichia coli in human-derived and foodchain-derived samples from England, Wales, and Scotland: an epidemiological surveillance and typing study

    Get PDF
    Background: Escherichia coli isolates producing extended-spectrum ÎČlactamases (‘ESBL-E. coli’) cause >5000 bacteraemias annually in the UK. The contribution of the food chain to this challenge is debated. Methods: Selective media were used to seek ESBL-E. coli in routinely-submitted human faeces, sewage, farm slurry, and retail foodstuffs in London, East Anglia, Northwest England, Scotland and Wales. Recovered isolates were sequenced and compared with 293 bloodstream and 83 veterinary surveillance ESBL-E. coli isolates from the same regions. Findings: 10.7% (2157/20243) of human faeces contained ESBL-E. coli, rising to 17.0% (678/3995) in London. ESBL-E. coli also were frequent in sewage and present in 65.4% (104/159) of retail chicken, but rare in other meats and absent from plant-based foods. Sequence Type (ST) 131 dominated among ESBL-E. coli from human blood (188/293, 64.2%), faeces (128/360, 35.6%) and sewage (14/65, 21.5%) with STs 38 and 648 also widespread; CTX-M-15 was the predominant ESBL in these lineages. By contrast, STs 602, 23, 117 - mostly with CTX-M-1 ESBL - dominated among food and veterinary isolates, with only two ST131 organisms recovered. ST10 occurred in both animals and humans: being frequent in surveillance bovines and representing 4.2% (15/360) of human faecal isolates (but only 1% [3/293] from bacteraemias); however both human and animal ST10 isolates were diverse in serotype. Interpretation: Most human bacteraemias with ESBL-E. coli in the UK involve successful human-associated STs, particularly ST131; non-human reservoirs made little contribution to invasive human disease. Funding: NIHR Policy Research

    Multifunctional biophotonic nanostructures inspired by the longtail glasswing butterfly for medical devices

    Get PDF
    Numerous living organisms possess biophotonic nanostructures that provide colouration and other diverse functions for survival. While such structures have been actively studied and replicated in the laboratory, it remains unclear whether they can be used for biomedical applications. Here, we show a transparent photonic nanostructure inspired by the longtail glasswing butterfly (Chorinea faunus) and demonstrate its use in intraocular pressure (IOP) sensors in vivo. We exploit the phase separation between two immiscible polymers (poly(methyl methacrylate) and polystyrene) to form nanostructured features on top of a Si3_N_4 substrate. The membrane thus formed shows good angle-independent white-light transmission, strong hydrophilicity and anti-biofouling properties, which prevent adhesion of proteins, bacteria and eukaryotic cells. We then developed a microscale implantable IOP sensor using our photonic membrane as an optomechanical sensing element. Finally, we performed in vivo testing on New Zealand white rabbits, which showed that our device reduces the mean IOP measurement variation compared with conventional rebound tonometry without signs of inflammation

    Subversion of human intestinal mucosa innate immunity by a Crohn’s disease-associated E. coli

    No full text
    International audienceAdherent-invasive Escherichia coli (AIEC), associated with Crohn's disease, are likely candidate contributory factors in the disease. However, signaling pathways involved in human intestinal mucosa innate host response to AIEC remain unknown. Here we use a 3D model of human intestinal mucosa explant culture to explore the effects of the AIEC strain LF82 on two innate immunity platforms, i.e., the inflammasome through evaluation of caspase-1 status, and NFjB signaling. We showed that LF82 bacteria enter and survive within a few intestinal epithelial cells and macrophages, without altering the mucosa overall architecture. Although 4-h infection with a Salmonella strain caused crypt disorganization, caspase-1 activation, and mature IL-18 production, LF82 bacteria were unable to activate caspase-1 and induce IL-18 production. In parallel, LF82 bacteria activated NFjB signaling in epithelial cells through IjBa phosphorylation, NFjBp65 nuclear translocation, and TNFa secretion. In addition, NFjB activation was crucial for the maintenance of epithelial homeostasis upon LF82 infection. In conclusion, here we decipher at the whole-mucosa level the mechanisms of the LF82-induced subversion of innate immunity that, by maintaining host cell integrity, ensure intracellular bacteria survival
    corecore