10 research outputs found

    Changing Paradigms in Down Syndrome: The First International Conference of the Trisomy 21 Research Society

    Get PDF
    Down syndrome (DS) is the most common genetic cause of intellectual disability (ID) in humans with an incidence of ∼1:1,000 live births worldwide. It is caused by the presence of an extra copy of all or a segment of the long arm of human chromosome 21 (trisomy 21). People with DS present with a constellation of phenotypic alterations involving most organs and organ systems. ID is present in all people with DS, albeit with variable severity. DS is also the most frequent genetic cause of Alzheimer's disease (AD), and ∼50% of those with DS will develop AD-related dementia. In the last few years, significant progress has been made in understanding the crucial genotype-phenotype relationships in DS, in identifying the alterations in molecular pathways leading to the various clinical conditions present in DS, and in preclinical evaluations of potential therapies to improve the overall health and well-being of individuals with DS. In June 2015, 230 scientists, advocates, patients, and family members met in Paris for the 1st International Conference of the Trisomy 21 Research Society. Here, we report some of the most relevant presentations that took place during the meeting

    CLONING OF RAT-SPECIFIC LONG PCP4/PEP19 ISOFORM (LPI)

    No full text
    We report the identification of a cDNA that encodes a putative protein of 94 amino acids and expected molecular weight of 10.7 kDa, the C-terminal half of which is identical to that of PEP19, a small, brain-specific protein involved in Ca++/calmodulin signaling. The novel rat-specific protein, tentatively named long PEP19 isoform (LPI), is the product of alternative splicing of the rat PCP4 gene encoding PEP19. We found that antibodies raised against the first 13 N-terminal amino acids of LPI, not present in PEP19, recognize a protein enriched in the developing rat brain

    Mutations in PDX1, the human lipoyl-containing component X of the pyruvate dehydrogenase-complex gene on chromosome 11p1, in congenital lactic acidosis.

    Get PDF
    We have identified and sequenced a cDNA that encodes an apparent human orthologue of a yeast protein-X component (ScPDX1) of pyruvate dehydrogenase multienzyme complexes. The new human cDNA that has been referred to as "HsPDX1" cDNA was cloned by use of the "database cloning" strategy and had a 1,506-bp open reading frame. The amino acid sequence of the protein encoded by the cDNA was 20% identical with that encoded by the yeast PDX1 gene and 40% identical with that encoded by the lipoate acetyltransferase component of the pyruvate dehydrogenase and included a lipoyl-bearing domain that is conserved in some dehydrogenase enzyme complexes. Northern blot analysis demonstrated that the major HsPDX1 mRNA was 2.5 kb in length and was expressed mainly in human skeletal and cardiac muscles but was also present, at low levels, in other tissues. FISH analysis performed with a P1-derived artificial chromosome (PAC)-containing HsPDX1 gene sublocalized the gene to 11p1.3. Molecular investigation of PDX1 deficiency in four patients with neonatal lactic acidemias revealed mutations 78del85 and 965del59 in a homozygous state, and one other patient had no PDX1 mRNA expression

    Classification of Human Chromosome 21 Gene-Expression Variations in Down Syndrome: Impact on Disease Phenotypes

    Get PDF
    Down syndrome caused by chromosome 21 trisomy is the most common genetic cause of mental retardation in humans. Disruption of the phenotype is thought to be the result of gene-dosage imbalance. Variations in chromosome 21 gene expression in Down syndrome were analyzed in lymphoblastoid cells derived from patients and control individuals. Of the 359 genes and predictions displayed on a specifically designed high-content chromosome 21 microarray, one-third were expressed in lymphoblastoid cells. We performed a mixed-model analysis of variance to find genes that are differentially expressed in Down syndrome independent of sex and interindividual variations. In addition, we identified genes with variations between Down syndrome and control samples that were significantly different from the gene-dosage effect (1.5). Microarray data were validated by quantitative polymerase chain reaction. We found that 29% of the expressed chromosome 21 transcripts are overexpressed in Down syndrome and correspond to either genes or open reading frames. Among these, 22% are increased proportional to the gene-dosage effect, and 7% are amplified. The other 71% of expressed sequences are either compensated (56%, with a large proportion of predicted genes and antisense transcripts) or highly variable among individuals (15%). Thus, most of the chromosome 21 transcripts are compensated for the gene-dosage effect. Overexpressed genes are likely to be involved in the Down syndrome phenotype, in contrast to the compensated genes. Highly variable genes could account for phenotypic variations observed in patients. Finally, we show that alternative transcripts belonging to the same gene are similarly regulated in Down syndrome but sense and antisense transcripts are not

    Low incidence of UPD in spontaneous abortions beyond the 5th gestational week

    No full text
    Approximately 15-20% of all clinically recognised pregnancies abort, most commonly between 8-12 gestational weeks. While the majority of early pregnancy losses is attributed to cytogenetic abnormalities, the aetiology of approximately 40% of early abortions remains unclear. To determine additional factors causing spontaneous abortions we retrospectively searched for uniparental disomies (UPD) in 77 cytogenetically normal diploid spontaneous abortions. In all cases an unbalanced chromosome anomaly was ruled out by cytogenetic investigation of chorionic/amniotic membranes and/or chorionic villi. For UPD screening microsatellite analyses were performed on DNA of abortion specimens and parental blood using highly polymorphic markers showing UPD in two cases. The distribution of markers analysed indicated maternal heterodisomy for chromosome 9 (UPhD(9)mat) in case 1 and paternal isodisomy for chromosome 21 (UPiD(21)pat) in case 2. The originating mechanism suggested was monosomy complementation in UPiD(21)pat and trisomy rescue in UPhD(9)mat. In the case of UPhD(9)mat purulent chorioamnionitis was noted and a distinctly growth retarded embryo of 3 cm crown-rump length showing no gross external malformations. Histological analysis in the case of UPiD(21)pat suggested a primary anlage defect. Our results indicate that less than 3% of genetically unexplained pregnancy wastage is associated with total chromosome UPD. UPD may contribute to anlage defects of human conception. Chromosome aneuploidy correction can occur in very early cleavage stages. More research, however, ought to be performed into placental mosaicism to further clarify timing and mechanisms involved in foetal UPD
    corecore