435 research outputs found

    Evolution of sexual mimicry in the orchid subtribe orchidinae: the role of preadaptations in the attraction of male bees as pollinators

    Get PDF
    BACKGROUND: Within the astonishing diversity of orchid pollination systems, sexual deception is one of the most stunning. An example is the genus Ophrys, where plants attract male bees as pollinators by mimicking female mating signals. Unsaturated hydrocarbons (alkenes) are often the key signal for this chemical mimicry. Here we investigate the evolution of these key compounds within Orchidinae by mapping their production in flowers of selected species onto their estimated phylogeny. RESULTS: We found that alkenes, at least in trace amounts, were present in 18 of 20 investigated species together representing 10 genera. Thus, the reconstruction of ancestral state for alkene-production showed that this is a primitive character state in Ophrys, and can be interpreted as a preadaptation for the evolution of sexual deception. Four of the investigated species, namely Ophrys sphegodes, Serapias lingua, S. cordigera, and Anacamptis papilionacea, that are pollinated primarily by male bees, produced significantly larger amounts and a greater number of different alkenes than the species pollinated either primarily by female bees or other insects. CONCLUSION: We suggest that high amounts of alkenes evolved for the attraction of primarily male bees as pollinators by sensory exploitation, and discuss possible driving forces for the evolution of pollination by male bees

    Pollination Syndromes in Mediterranean Orchids—Implications for Speciation, Taxonomy and Conservation

    Get PDF
    The Mediterranean flora is spectacularly rich in orchid species that have evolved remarkable adaptations to their environment. Orchids have complex and delicate interactions with their pollinators, which makes them particularly prone to local extinction. Conservation actions should be encouraged for a range of endangered Mediterranean orchid species, but the current taxonomic confusion in several genera and the apparent disagreement among orchid taxonomists make the situation particularly confusing from a conservation perspective. In this review, we document how the different pollination syndromes of Mediterranean orchids (nectar reward, shelter offering, food deception and sexual deception) can have a profound impact on the type of reproductive barriers among species, on floral phenotypic variation as we perceive it, on potentially related processes of species sorting and extinction and, consequently, should have a strong influence on the related conservation management programs. We also highlight that the majority of Mediterranean orchids are pollinated by specialised bees often occupying otherwise narrow ecological niches (e.g. pollen specialisation, brood cell parasites, specific nesting site). This condition makes the orchid-pollinator interactions very fragile and several orchid species prone to local extinction. We illustrate this phenomenon by a selection of case studies that show how the adequate integration of the ecological requirements/traits of the orchids and their associated pollinators into conservation actions could help protect endangered species and ensure the sustainability of the often complex local pollination we

    Molecular phylogenetics of Dipsacaceae reveals parallel trends in seed dispersal syndromes

    Get PDF
    Phylogenetic relationships among 17 taxa of Dipsacaceae were inferred from nucleotide sequence variation in both the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA and the chloroplast trnL (UAA) intron sequences. The combined phylogenetic analysis, carried out by using two taxa from Valerianaceae as an outgroup yielded a single most parsimonious tree, in which Dipsacaceae are divided into two major clades: one including Lomelosia and Pycnocomon, both in a sister group relationship with a clade containing Pterocephalus, Scabiosa and Sixalix; the other including Pseudoscabiosa, Succisa and Succisella is sister group to Knautia, Pterocephalidium, Dipsacus and Cephalaria. The results obtained here greatly differ from previous ones based on classical morphology, but are congruent with recent findings on epicalyx differentiation and with pollen characters. In particular, our results would confirm on molecular grounds the recently restricted circumscription for Scabioseae proposed by other authors. Our phylogenetic hypothesis indicates that adaptations to seed dispersal have been a very strong driving force in Dipsacaceae evolution, with similar selective pressures causing the onset of similar epicalyx shapes and dispersal modes in a parallel fashion in various taxa. For this reason, the gross morphology of the involucel is deceptive in inferring relationships

    Do native and invasive herbivores have an effect on Brassica rapa pollination?

    Full text link
    Mutualistic (e.g. pollination) and antagonistic (e.g. herbivory) plant–insect interactions shape levels of plant fitness and can have interactive effects. By using experimental plots of Brassica rapa plants infested with generalist (Mamestra brassicae) and specialised (Pieris brassicae) native herbivores and with a generalist invasive (Spodoptera littoralis) herbivore, we estimated both pollen movement among treatments and the visiting behaviour of honeybees versus other wild pollinators. Overall, we found that herbivory has weak effects on plant pollen export, either in terms of inter‐treatment movements or of dispersion distance. Plants infested with the native specialised herbivore tend to export less pollen to other plants with the same treatment. Other wild pollinators preferentially visit non‐infested plants that differ from those of honeybees, which showed no preferences. Honeybees and other wild pollinators also showed different behaviours on plants infested with different herbivores, with the former tending to avoid revisiting the same treatment and the latter showing no avoidance behaviour. When taking into account the whole pollinator community, i.e. the interactive effects of honeybees and other wild pollinators, we found an increased avoidance of plants infested by the native specialised herbivore and a decreased avoidance of plants infested by the invasive herbivore. Taken together, our results suggest that herbivory may have an effect on B. rapa pollination, but this effect depends on the relative abundance of honeybees and other wild pollinators

    Polymorphism of postmating reproductive isolation within plant species

    Get PDF
    Speciation can be viewed as the evolution of reproductive isolation between formerly interbreeding populations. Recent years have seen great advances in our understanding of the genetic mechanisms underlying postmating reproductive isolation during plant speciation. Nevertheless, little is known about the early stages of species divergence and the evolution of reproductive isolation at the within species level. Direct or indirect evidence indicates that intrinsic postzygotic mechanisms are prevalent and often polymorphic among allopatric conspecific populations of plants. We review studies that report direct or indirect evidence for polymorphism of genic (i.e., gene-based) postmating reproductive isolation within species' ranges. Specifically, we focus on three genic mechanisms often held responsible for reproductive isolation between species: Bateson-Dobzhansky-Muller (BDM) incompatibilities and two widespread types of genomic conflict, transmission ratio distortion and cytonuclear interactions. We further highlight the close similarity between reported cases of outbreeding depression among conspecific populations, especially those that correspond to the intrinsic co-adaptation model, and the origin of genetic incompatibilities. This association holds great promise to help improve our understanding of the processes involved in the initial stage of speciation, and it highlights the close (and often overlooked) relationship between evolutionary and conservation biology

    STEPS TOWARDS A UNIFIED THEORY OF PSYCHOPATHOLOGY: THE PHASE SPACE OF MEANING MODEL

    Get PDF
    none6noThe hypothesis of a general psychopathology factor (p factor) has been advanced in recent years. It is an innovation with breakthrough potential, in the perspective of a unified view of psychopathology; however, what remains a controversial topic is how its nature might be conceptualized. The current paper outlines a semiotic, embodied and psychoanalytic conceptualization of psychopathology – the Phase Space of Meaning (PSM) model – aimed at providing ontological grounds to the p factor hypothesis. Framed within a more general model of how the mind works, the PSM model maintains that the p factor can be conceived as the empirical marker of the degree of rigidity of the meaning-maker’s way of interpreting experience, namely of the dimensions of meanings used to map the environment’s variability. As to the clinical implications, two main aspects are outlined. First, according PSM model, psychopathology is not an invariant condition, and does not have a set dimensionality, but is able to vary it locally, in order to address the requirement of situated action. Second, psychopathology is conceived as one of the mind’s modes of working, rather than the manifestation of its disruption. Finally, the puzzling issue of the interplay between stability and variability in the evolutionary trajectories of patients along with their life events is addressed and discussed.openVenuleo, C.; Salvatore, G.; Andrisano-Ruggieri, R.; Marinaci, T.; Cozzolino, M.; Salvatore, S.Venuleo, C.; Salvatore, G.; Andrisano-Ruggieri, R.; Marinaci, T.; Cozzolino, M.; Salvatore, S

    Heterochromatin distribution in selected taxa of the 42-chromosomes Orchis s. l. (Orchidaceae)

    Get PDF
    In six 42-chromosomes taxa belonging to genus Orchis s. l. heterochromatin location and distribution and staining properties were analysed by means of C-banding and of the fluorochromes 4'-6-diamino-2-phenylindole-2HCl (DAPI) and Hoechst 33258. Most species could be distinguished on the basis of heterochromatin amounts and distribution. In the species O. mascula and O. provincialis most DAPI-positive sites did not co-localize with C-bands. DAPI revealed bright fluorescence at telomeric or subtelomeric regions of numerous chromosomes of O. mascula and particularly large/bright blocks at the telomeres of O. provincialis. In O. x penzigiana (Orchis mascula ssp. ichnusae x O. provincialis) overall heterochromatin distribution followed that of the parental species. In Neotinea group all DAPI positive bands co-localize with C-bands, but have different distribution in the taxa analysed. Present and literature data indicate a high level of plasticity of heterochromatin organization in Orchis s. l., and suggest evolutionary pathways in agreement with recent molecular data

    Variability in Floral Scent in Rewarding and Deceptive Orchids: The Signature of Pollinator-imposed Selection?

    Get PDF
    Background and Aims A comparative investigation was made of floral scent variation in the closely related, food-rewarding Anacamptis coriophora and the food-deceptive Anacamptis morio in order to identify patterns of variability of odour compounds in the two species and their role in pollinator attraction/avoidance learning. Methods Scent was collected from plants in natural populations and samples were analysed via quantitative gas chromatography and mass spectrometry. Combined gas chromatography and electroantennographic detection was used to identify compounds that are detected by the pollinators. Experimental reduction of scent variability was performed in the field with plots of A. morio plants supplemented with a uniform amount of anisaldehyde. Key Results Both orchid species emitted complex odour bouquets. In A. coriophora the two main benzenoid compounds, hydroquinone dimethyl ether (1,4-dimethoxybenzene) and anisaldehyde (methoxybenzaldehyde), triggered electrophysiological responses in olfactory neurons of honey-bee and bumble-bee workers. The scent of A. morio, however, was too weak to elicit any electrophysiological responses. The overall variation in scent was significantly lower in the rewarding A. coriophora than in the deceptive A. morio, suggesting pollinator avoidance-learning selecting for high variation in the deceptive species. A. morio flowers supplemented with non-variable scent in plot experiments, however, did not show significantly reduced pollination success. Conclusions Whereas in the rewarding A. coriophora stabilizing selection imposed by floral constancy of the pollinators may reduce scent variability, in the deceptive A. morio the emitted scent seems to be too weak to be detected by pollinators and thus its high variability may result from relaxed selection on this floral trai

    Hopping or Jumping on the Cliffs: The Unusual Phylogeographical and Demographic Structure of an Extremely Narrow Endemic Mediterranean Plant

    Get PDF
    Several past and recent climatic and geological events have greatly influenced the current distribution of coastal species around the Mediterranean Basin. As a consequence, the reconstruction of the distributional history of these species is challenging. In this study, we used both chloroplast and nuclear SNPs to assess the levels of genetic differentiation, contemporary/historical levels of gene flow, and demographic history for the three only known (one mainland and two insular) populations of Eokochia saxicola, a rare Mediterranean coastal rocky halophyte. Plastid genome analysis revealed very low intraspecific haplotype variation and partial admixture among Capri and Palinuro populations with at least two independent colonization events for the Strombolicchio islet. Nuclear SNPs variation consistently identified three distinct genetic clusters corresponding to our sampling localities. Furthermore, strong genetic isolation was confirmed by both historical and contemporary levels of migration among the three populations. The DIYABC analysis identified two introductions temporally separated from Palinuro to Capri (ca.25 Mya) and subsequently to Strombolicchio (ca.09 Mya) as the most likely hypothesis for the current distribution of E. saxicola. Regardless of their small population sizes, all study sites supported high-genetic diversity maintained by outcrossing and random mating between individuals owing largely to wind pollination, an exclusive trait among Mediterranean narrow endemics. In conclusion, the patterns observed confirm that some Mediterranean endemics are not necessarily “evolutionary dead-ends” but rather represent species that have extensive demographic stability and a strong evolutionary legacy

    Mating system variation and assortative mating of sympatric bromeliads (Pitcairnia spp.) endemic to neotropical inselbergs

    Get PDF
    Premise of the study: The mating system is an important component of the complex set of reproductive isolation barriers causing plant speciation. However, empirical evidence showing that the mating system may promote reproductive isolation in co-occurring species is limited. The mechanisms by which the mating system can act as a reproductive isolation barrier are also largely unknown. Methods: Here we studied progeny arrays genotyped with microsatellites and patterns of stigma–anther separation (herkogamy) to understand the role of mating system shifts in promoting reproductive isolation between two hybridizing taxa with porous genomes, Pitcairnia albiflos and P. staminea (Bromeliaceae). Key results: In P. staminea, we detected increased selfing and reduced herkogamy in one sympatric relative to two allopatric populations, consistent with mating system shifts in sympatry acting to maintain the species integrity of P. staminea when in contact with P. albiflos. Conclusions: Mating system variation is a result of several factors acting simultaneously in these populations. We report mating system shifts as one possible reproductive barrier between these species, acting in addition to numerous other prezygotic (i.e., flower phenology and pollination syndromes) and postzygotic barriers (Bateson–Dobzhansky–Muller genetic incompatibilities)
    • 

    corecore