27,623 research outputs found

    ISOCAM spectro-imaging of the H2 rotational lines in the supernova remnant IC443

    Get PDF
    We report spectro-imaging observations of the bright western ridge of the supernova remnant IC 443 obtained with the ISOCAM circular variable filter (CVF) on board the Infrared Space Observatory (ISO). This ridge corresponds to a location where the interaction between the blast wave of the supernova and ambient molecular gas is amongst the strongest. The CVF data show that the 5 to 14 micron spectrum is dominated by the pure rotational lines of molecular hydrogen (v = 0--0, S(2) to S(8) transitions). At all positions along the ridge, the H2 rotational lines are very strong with typical line fluxes of 10^{-4} to 10^{-3} erg/sec/cm2/sr. We compare the data to a new time-dependent shock model; the rotational line fluxes in IC 443 are reproduced within factors of 2 for evolutionary times between 1,000 and 2,000 years with a shock velocity of 30 km/sec and a pre-shock density of 10^4 /cm3.Comment: To appear in Astronomy and Astrophysic

    ISO spectroscopy of compact HII regions in the Galaxy. II Ionization and elemental abundances

    Get PDF
    Based on the ISO spectral catalogue of compact HII regions by Peeters et al. (2001), we present a first analysis of the hydrogen recombination and atomic fine-structure lines originated in the ionized gas. The sample consists of 34 HII regions located at galactocentric distances between Rgal = 0 and 15 kpc. The SWS HI recombination lines between 2 and 8 mum are used to estimate the extinction law at these wavelengths for 14 HII regions. An extinction in the K band between 0 and ∼\sim 3 mag. has been derived. The fine-structure lines of N, O, Ne, S and Ar are detected in most of the sources. Most of these elements are observed in two different ionization stages probing a range in ionization potential up to 41 eV. The ISO data, by itself or combined with radio data taken from the literature, is used to derive the elemental abundances relative to hydrogen. The present data thus allow us to describe for each source its elemental abundance, its state of ionization and to constrain the properties of the ionizing star(s).Comment: Accepted in Astronomy and Astrophysics, 22 pages, 20 figures, 9 table

    Fractal time random walk and subrecoil laser cooling considered as renewal processes with infinite mean waiting times

    Full text link
    There exist important stochastic physical processes involving infinite mean waiting times. The mean divergence has dramatic consequences on the process dynamics. Fractal time random walks, a diffusion process, and subrecoil laser cooling, a concentration process, are two such processes that look qualitatively dissimilar. Yet, a unifying treatment of these two processes, which is the topic of this pedagogic paper, can be developed by combining renewal theory with the generalized central limit theorem. This approach enables to derive without technical difficulties the key physical properties and it emphasizes the role of the behaviour of sums with infinite means.Comment: 9 pages, 7 figures, to appear in the Proceedings of Cargese Summer School on "Chaotic dynamics and transport in classical and quantum systems

    Robust pricing and hedging of double no-touch options

    Full text link
    Double no-touch options, contracts which pay out a fixed amount provided an underlying asset remains within a given interval, are commonly traded, particularly in FX markets. In this work, we establish model-free bounds on the price of these options based on the prices of more liquidly traded options (call and digital call options). Key steps are the construction of super- and sub-hedging strategies to establish the bounds, and the use of Skorokhod embedding techniques to show the bounds are the best possible. In addition to establishing rigorous bounds, we consider carefully what is meant by arbitrage in settings where there is no {\it a priori} known probability measure. We discuss two natural extensions of the notion of arbitrage, weak arbitrage and weak free lunch with vanishing risk, which are needed to establish equivalence between the lack of arbitrage and the existence of a market model.Comment: 32 pages, 5 figure

    Size and emotion or depth and emotion? Evidence, using Matryoshka (Russian) dolls, of children using physical depth as a proxy for emotional charge

    Get PDF
    Background: The size and emotion effect is the tendency for children to draw people and other objects with a positive emotional charge larger than those with a negative or neutral charge. Here we explored the novel idea that drawing size might be acting as a proxy for depth (proximity).Methods: Forty-two children (aged 3-11 years) chose, from 2 sets of Matryoshka (Russian) dolls, a doll to represent a person with positive, negative or neutral charge, which they placed in front of themselves on a sheet of A3 paper. Results: We found that the children used proximity and doll size, to indicate emotional charge. Conclusions: These findings are consistent with the notion that in drawings, children are using size as a proxy for physical closeness (proximity), as they attempt with varying success to put positive charged items closer to, or negative and neutral charge items further away from, themselves

    Design and analysis of fractional factorial experiments from the viewpoint of computational algebraic statistics

    Full text link
    We give an expository review of applications of computational algebraic statistics to design and analysis of fractional factorial experiments based on our recent works. For the purpose of design, the techniques of Gr\"obner bases and indicator functions allow us to treat fractional factorial designs without distinction between regular designs and non-regular designs. For the purpose of analysis of data from fractional factorial designs, the techniques of Markov bases allow us to handle discrete observations. Thus the approach of computational algebraic statistics greatly enlarges the scope of fractional factorial designs.Comment: 16 page

    The Self-Regulated Growth of Supermassive Black Holes

    Full text link
    We present a series of simulations of the self--regulated growth of supermassive black holes (SMBHs) in galaxies via three different fueling mechanisms: major mergers, minor mergers, and disk instabilities. The SMBHs in all three scenarios follow the same black hole fundamental plane (BHFP) and correlation with bulge binding energy seen in simulations of major mergers, and observed locally. Furthermore, provided that the total gas supply is significantly larger than the mass of the SMBH, its limiting mass is not influenced by the amount of gas available or the efficiency of black hole growth. This supports the assertion that SMBHs accrete until they reach a critical mass at which feedback is sufficient to unbind the gas locally, terminating the inflow and stalling further growth. At the same time, while minor and major mergers follow the same projected correlations (e.g., the MBH−σM_{BH}-\sigma and Magorrian relations), SMBHs grown via disk instabilities do not, owing to structural differences between the host bulges. This finding is supported by recent observations of SMBHs in pseudobulges and bulges in barred systems, as compared to those hosted by classical bulges. Taken together, this provides support for the BHFP and binding energy correlations as being more "fundamental" than other proposed correlations in that they reflect the physical mechanism driving the co-evolution of SMBHs and spheroids.Comment: 15 pages, 16 figures, accepted for publication in Ap

    Aging and the visual perception of exocentric distance

    Get PDF
    AbstractThe ability of 18 younger and older adults to visually perceive exocentric distances was evaluated. The observers judged the extent of fronto-parallel and in-depth spatial intervals at a variety of viewing distances from 50cm to 164.3cm. Most of the observers perceived in-depth intervals to be significantly smaller than fronto-parallel intervals, a finding that is consistent with previous studies. While none of the individual observers’ judgments of exocentric distance were accurate, the judgments of the older observers were significantly more accurate than those of the younger observers. The precision of the observers’ judgments across repeated trials, however, was not affected by age. The results demonstrate that increases in age can produce significant improvements in the visual ability to perceive the magnitude of exocentric distances

    Theory of "ferrisuperconductivity" in U1−xThxBe13U_{1-x}Th_xBe_{13}

    Full text link
    We construct a two component Ginzburg-Landau theory with coherent pair motion and incoherent quasiparticles for the phase diagram of U1−xThxBe13U_{1-x}Th_xBe_{13}. The two staggered superconducting states live at the Brillouin zone center and the zone boundary, and coexist for temperatures T≤Tc2T\le T_{c2} at concentrations xc1≈0.02≤x≤xc2≈0.04x_{c1}\approx 0.02\le x \le x_{c2}\approx 0.04. We predict below Tc2T_{c2} appearance of a charge density wave (CDW) and Be-sublattice distortion. The distortion explains the μ\muSR relaxation anomaly, and Th-impurity mediated scattering of ultrasound to CDW fluctuations explains the attenuation peak.Comment: 4 pages, 4 eps figures, REVTe

    Total Degree Formula for the Generic Offset to a Parametric Surface

    Full text link
    We provide a resultant-based formula for the total degree w.r.t. the spatial variables of the generic offset to a parametric surface. The parametrization of the surface is not assumed to be proper.Comment: Preprint of an article to be published at the International Journal of Algebra and Computation, World Scientific Publishing, DOI:10.1142/S021819671100680
    • …
    corecore