5,418 research outputs found

    Cohomology of Line Bundles: A Computational Algorithm

    Full text link
    We present an algorithm for computing line bundle valued cohomology classes over toric varieties. This is the basic starting point for computing massless modes in both heterotic and Type IIB/F-theory compactifications, where the manifolds of interest are complete intersections of hypersurfaces in toric varieties supporting additional vector bundles.Comment: 11 pages, 1 figure, 2 tables; v2: typos and references corrected; v3: proof-related statements updated, cohomCalg implementation available at http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg

    Optimal control of martingales in a radially symmetric environment

    Full text link
    We study a stochastic control problem for continuous multidimensional martingales with fixed quadratic variation. In a radially symmetric environment, we are able to find an explicit solution to the control problem and find an optimal strategy. We show that it is optimal to switch between two strategies, depending only on the radius of the controlled process. The optimal strategies correspond to purely radial and purely tangential motion. It is notable that the value function exhibits smooth fit even when switching to tangential motion, where the radius of the optimal process is deterministic. Under sufficient regularity on the cost function, we prove optimality via viscosity solutions of a Hamilton-Jacobi-Bellman equation. We extend the results to cost functions that may become infinite at the origin. Extra care is required to solve the control problem in this case, since it is not clear how to define the optimal strategy with deterministic radius at the origin. Our results generalise some problems recently considered in Stochastic Portfolio Theory and Martingale Optimal Transport.Comment: 41 pages, 6 figure. Additional motivating example added, definitions and problem formulations clarified and simplifie

    Long-Term High-Temperature Stability of Functionalized Graphene Oxide Nanoplatelets in Arab-D and API Brine

    Get PDF
    Partially reduced graphene oxide (prGO) was covalently functionalized with a zwitterionic polymer polyzwitterionic polymer to afford a composite material with excellent dispersibility and long-term stability in high salinity brines including standard API and Arab-D found in deep oil reservoirs. When heated at 90 °C, the dispersions remained stable in excess of 140 days. These results suggest the utility of imidazolium-based polymers for brine stabilization as well as the use of diazonium containing polymers for a “grafting-to” approach to nanocarbon functionalization.Saudi Aramco (MIT Energy Initiative)Massachusetts Institute of Technology. Institute for Soldier NanotechnologiesCamille & Henry Dreyfus Foundation. Postdoctoral Program in Environmental Chemistry (Fellowship

    Cohomology of Line Bundles: Applications

    Full text link
    Massless modes of both heterotic and Type II string compactifications on compact manifolds are determined by vector bundle valued cohomology classes. Various applications of our recent algorithm for the computation of line bundle valued cohomology classes over toric varieties are presented. For the heterotic string, the prime examples are so-called monad constructions on Calabi-Yau manifolds. In the context of Type II orientifolds, one often needs to compute equivariant cohomology for line bundles, necessitating us to generalize our algorithm to this case. Moreover, we exemplify that the different terms in Batyrev's formula and its generalizations can be given a one-to-one cohomological interpretation. This paper is considered the third in the row of arXiv:1003.5217 and arXiv:1006.2392.Comment: 56 pages, 8 tables, cohomCalg incl. Koszul extension available at http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg

    Analysis of isoform-specific tau aggregates suggests a common toxic mechanism involving similar pathological conformations and axonal transport inhibition

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Neurobiology of Aging 47 (2016): 113–126, doi:10.1016/j.neurobiolaging.2016.07.015.Misfolded tau proteins are characteristic of tauopathies, but the isoform composition of tau inclusions varies by tauopathy. Using aggregates of the longest tau isoform (containing 4 microtubule-binding repeats and 4-repeat tau), we recently described a direct mechanism of toxicity that involves exposure of the N-terminal phosphatase-activating domain (PAD) in tau, which triggers a signaling pathway that disrupts axonal transport. However, the impact of aggregation on PAD exposure for other tau isoforms was unexplored. Here, results from immunochemical assays indicate that aggregation-induced increases in PAD exposure and oligomerization are common features among all tau isoforms. The extent of PAD exposure and oligomerization was larger for tau aggregates composed of 4-repeat isoforms compared with those made of 3-repeat isoforms. Most important, aggregates of all isoforms exhibited enough PAD exposure to significantly impair axonal transport in the squid axoplasm. We also show that PAD exposure and oligomerization represent common pathological characteristics in multiple tauopathies. Collectively, these results suggest a mechanism of toxicity common to each tau isoform that likely contributes to degeneration in different tauopathies.This work was supported by NIH grants R01 AG044372 (Nicholas M. Kanaan), R01 NS082730 (Nicholas M. Kanaan and Scott T. Brady), BrightFocus Foundation (A2013364S, Nicholas M. Kanaan), the Jean P. Schultz Biomedical Research Endowment (Nicholas M. Kanaan), the Secchia Family Foundation (Nicholas M. Kanaan) and NS066942A (Gerardo Morfini)

    Comparative ergonomic workflow and user experience analysis of MRI versus fluoroscopy-guided vascular interventions:an iliac angioplasty exemplar case study

    Get PDF
    Purpose A methodological framework is introduced to assess and compare a conventional fluoroscopy protocol for peripheral angioplasty with a new magnetic resonant imaging (MRI)-guided protocol. Different scenarios were considered during interventions on a perfused arterial phantom with regard to time-based and cognitive task analysis, user experience and ergonomics. Methods Three clinicians with different expertise performed a total of 43 simulated common iliac angioplasties (9 fluoroscopic, 34 MRI-guided) in two blocks of sessions. Six different configurations for MRI guidance were tested in the first block. Four of them were evaluated in the second block and compared to the fluoroscopy protocol. Relevant stages’ durations were collected, and interventions were audio-visually recorded from different perspectives. A cued retrospective protocol analysis (CRPA) was undertaken, including personal interviews. In addition, ergonomic constraints in the MRI suite were evaluated. Results Significant differences were found when comparing the performance between MRI configurations versus fluoroscopy. Two configurations [with times of 8.56 (0.64) and 9.48 (1.13) min] led to reduce procedure time for MRI guidance, comparable to fluoroscopy [8.49 (0.75) min]. The CRPA pointed out the main influential factors for clinical procedure performance. The ergonomic analysis quantified musculoskeletal risks for interventional radiologists when utilising MRI. Several alternatives were suggested to prevent potential low-back injuries. Conclusions This work presents a step towards the implementation of efficient operational protocols for MRI-guided procedures based on an integral and multidisciplinary framework, applicable to the assessment of current vascular protocols. The use of first-user perspective raises the possibility of establishing new forms of clinical training and education

    Targeting pediatric leukemia propagating cells using anti-CD200 antibody therapy.

    Get PDF
    Treating refractory pediatric acute lymphoblastic leukemia (ALL) remains a challenge despite impressive remission rates (>90%) achieved in the last decade. The use of innovative immunotherapeutic approaches such as anti-CD19 chimeric antigen receptor T cells does not ensure durable remissions, because leukemia-propagating cells (LPCs) that lack expression of CD19 can cause relapse, which signifies the need to identify new markers of ALL. Here we investigated expression of CD58, CD97, and CD200, which were previously shown to be overexpressed in B-cell precursor ALL (BCP-ALL) in CD34(+)/CD19(+), CD34(+)/CD19(–), CD34(–)/CD19(+), and CD34(–)/CD19(–) LPCs, to assess their potential as therapeutic targets. Whole-genome microarray and flow cytometric analyses showed significant overexpression of these molecules compared with normal controls. CD58 and CD97 were mainly co-expressed with CD19 and were not a prerequisite for leukemia engraftment in immune deficient mice. In contrast, expression of CD200 was essential for engraftment and serial transplantation of cells in measurable residual disease (MRD) low-risk patients. Moreover, these CD200(+) LPCs could be targeted by using the monoclonal antibody TTI-CD200 in vitro and in vivo. Treating mice with established disease significantly reduced disease burden and extended survival. These findings demonstrate that CD200 could be an attractive target for treating low-risk ALL, with minimal off-tumor effects that beset current immunotherapeutic approaches

    The Evolution of Adiabatic Supernova Remnants in a Turbulent, Magnetized Medium

    Get PDF
    (Abridged) We present the results of three dimensional calculations for the MHD evolution of an adiabatic supernova remnant in both a uniform and turbulent interstellar medium using the RIEMANN framework of Balsara. In the uniform case, which contains an initially uniform magnetic field, the density structure of the shell remains largely spherical, while the magnetic pressure and synchrotron emissivity are enhanced along the plane perpendicular to the field direction. This produces a bilateral or barrel-type morphology in synchrotron emission for certain viewing angles. We then consider a case with a turbulent external medium as in Balsara & Pouquet, characterized by vA(rms)/cs=2v_{A}(rms)/c_{s}=2. Several important changes are found. First, despite the presence of a uniform field, the overall synchrotron emissivity becomes approximately spherically symmetric, on the whole, but is extremely patchy and time-variable, with flickering on the order of a few computational time steps. We suggest that the time and spatial variability of emission in early phase SNR evolution provides information on the turbulent medium surrounding the remnant. The shock-turbulence interaction is also shown to be a strong source of helicity-generation and, therefore, has important consequences for magnetic field generation. We compare our calculations to the Sedov-phase evolution, and discuss how the emission characteristics of SNR may provide a diagnostic on the nature of turbulence in the pre-supernova environment.Comment: ApJ, in press, 5 color figure

    Percutaneous Achilles Tendon Repair Using Ultrasound Guidance: An Intraoperative Ultrasound Technique

    Get PDF
    Rupture of the Achilles tendon is a common injury seen in patients of varying ages and activity levels. There are many considerations for treatment of these injuries, with both operative and nonoperative management providing satisfactory outcomes in the literature. The decision to proceed with surgical intervention should be individualized for each patient, including the patient\u27s age, future athletic goals, and comorbidities. Recently, a minimally invasive percutaneous approach to repair the Achilles tendon has been proposed as an equivalent alternative to the traditional open repair, while avoiding wound complications associated with larger incisions. However, many surgeons have been hesitant to adopt these approaches due to poor visualization, concern that suture capture in the tendon is not as robust, and the potential for iatrogenic sural nerve injury. The purpose of this Technical Note is to describe a technique using high-resolution ultrasound guidance intraoperatively during minimally invasive repair of the Achilles tendon. This technique minimizes the drawbacks of poor visualization associated with percutaneous repair, while providing the benefit of a minimally invasive approach
    • …
    corecore