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ABSTRACT. Partially reduced graphene oxide (prGO) was covalently functionalized with an 

diazonium containing, imidazolium based, polyzwitterionic polymer to afford a composite 

material with excellent dispersibility and long-term stability in high salinity brines including 

standard API and Arab-D found in deep oil reservoirs. When heated at 90 °C, the dispersions 

remained stable in excess of 140 days. These results suggest the utility of imidazolium-based 

polymers for brine stabilization as well as the use of diazonium containing polymers for a 

‘grafting-to’ approach to nanocarbon functionalization. 
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 2

Introduction 

The stabilization of nano-sized materials in aqueous environments with high salinities (high 

ionic strength) has become an important area of research due to the relevance of these materials 

for the petroleum industry. The delivery of nanoscale materials deep into oil reservoirs are of 

particular interest, as these materials can act as imaging enhancers and/or act reporter probes, 

providing useful information on the state of the reservoir, which is essential to the improvement 

of recovery yields. Designing effective reservoir imaging materials is challenging as a result of 

the fact that the internal environment of oil reservoirs contains high salinity and high temperature 

brines, which can readily destabilize nano-materials injected into them.  

In an attempt to address the above issues and successfully stabilize materials in high ionic 

strength reservoir environments, work by Johnston et al in 2013.
1
 showed that iron oxide 

nanoparticles wrapped with sulfonic salt containing polyacrylate/acrylamide-type polymers 

could effectively stabilize the nanoparticles in American Petroleum Institute (API) brine 

(aqueous 8 wt% sodium chloride and 2 wt% calcium chloride) at 90 °C for up to one month. The 

ionic nature of the polymer successfully imparted electrosteric stabilization and repulsion 

required to stabilize the nanoparticles against agglomeration in the brine. 

Another example, also using an ionic polymer, was shown to stabilize carbon nanoparticles in 

API brine as reported by Tour et al in 2012.
2
 Polyvinyl alcohol was grafted onto the surface of 

the nanoparticles and could be sulfonated with a chlorosulfonic acid treatment. It was shown that 

the lightly sulfonated nanoparticles could be stably dispersed in API brine at 100 °C. The 

unsulfonated nanoparticles were not dispersible in the brine. The highly sulfonated nanoparticles 

were not as stable as the lightly sulfonated variant, and formed a suspension of small particulates 
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 3

upon heating. The long-term stability of the stable dispersion over time was not examined; 

however, the nanoparticles were shown to act effectively as carriers for a reporter molecule when 

injected into a simulated reservoir environment. Other relevant work in this area by Vansco and 

coworkers has shown that a polyimidazole betaine was dispersible in 22.6 wt% NaCl solutions.
3
 

Long-term stability was not reported.  

To meet the demanding conditions for solubility and stability in brine at elevated temperatures, 

we have focused on the functionalization of nano-sized graphene sheets (<1 µm).  An advantage 

of this approach is the large surface area and chemical reactivity of the graphene oxide basal 

plane,
4-6

 which facilitated functionalization as well as the potential ability to transport adsorbed 

nanomaterials deemed of interest.
7-10

 As a result, success with this system could find utility for 

stabilizing and transporting different payloads (molecules or nanoparticles).  

Highly oxidized graphene oxide (made with a 5:1 permanganate ratio versus the typical 3:1) 

forms stable dispersions in aqueous concentrated sodium chloride solutions up to 5 wt%, as 

reported by Johnston and coworkers.
11

 The stability of the GO sheets in the brine was ascribed to 

the presence of a large number of negatively charged groups on the sheet edges that provide 

sufficient electrostatic repulsion even in a high ionic strength environment. This GO could be 

used to stabilize oil/water emulsions, but was not examined under harsher conditions including 

higher ionic strength brine and/or elevated temperatures. 

In our experiments graphene oxide is not stably dispersed at room temperature or above in the 

target brines tested all of which contained divalent ions, including the standard API (Figure 1). 

This was attributed to electrostatic crosslinking and destabilization of the negatively charged 

groups present on the GO sheets, particularly by the divalent calcium ions. 
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We were able to successfully stabilize submicron sized GO sheets (ca. 300 nm) by covalently 

attaching poly(vinylimidazole)-co-poly(aminostyrene) copolymer (PVIM-co-PYPy)
12

 onto the 

sheets through diazonium chemistry. The attached polymer was then be subjected to a post-

functionalization reaction with 1,3-propane sultone to yield a zwitterionic-type polymer (Scheme 

1). In addition to 
1
H NMR, the structure of this polymer was examined through an HSQC NMR 

experiment, the results of which suggest a random copolymer with a ratio of 10:1 

imidazole:aniline units (Figure S6). 

Figure 1. Unstable mixtures of GO in Arab D  and API brines at initial 

preparation and after 24 h at 90 °C. 
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 5

 

It has been shown repeatedly that zwitterionic groups (i.e. species containing linked cationic and 

anionic groups with an overall neutral charge) have excellent brine solubility and stability due to 

what is referred to as the antipolyelectrolyte effect.
13

 This effect causes the chain to expand upon 

addition of electrolytes which help to stabilize it against agglomeration/destabilization through 

steric effects (electrosteric stabilization).
14

 Such materials have been used in applications as 

seawater antifouling coatings
15

 but have also been suggested for potential use in enhanced oil 

recovery.
16

 The zwitterionic polymer-partially reduced GO (prGO) composite material discussed 

in this report was shown to be stable in both standard API brine, as well as a higher ionic 

strength brine known as Arab-D, with excellent long-term stability upon standing at 90 °C (140 

days to-date). The dispersion stability was monitored both visually and spectroscopically. 

Dynamic light scattering (DLS) was used to monitor changes in average particle size over time. 

 

 

Scheme 1. Synthesis of polymer PVIM-co-PVPy and functionalization of partially reduced graphene 

oxide. 
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 6

Experimental  

General Materials and Methods: All chemicals were purchased from Sigma-Aldrich and used 

as received unless stated otherwise. X-ray photoelectron spectroscopy (XPS) analyses were 

performed on a Versaprobe II X-ray photoelectron spectrometer from Physical Electronics with a 

monochromated Al Kα X-ray source (1486.6 eV) and operated at a base pressure of 1 × 10
-9

 Torr 

with 45.7 Watts of power, a 200 µm spot beam size and a take-off angle of 45º. The XPS spectra 

were analyzed and atomic peaks were integrated using the CasaXPS software to determine the 

relative atomic percentages of the element species present in the samples. Thermogravimetric 

analyses were performed on a TA Instruments Discovery TGA in the range of 50 – 800 ºC at a 

constant ramp rate of 20 ºC min
-1

 under nitrogen atmosphere. Percent transmittance (%T) spectra 

of composite in brine samples were taken on a Varian Cary 6000i instrument using a 

zero/background correction in quartz cuvettes. Dynamic light scattering (DLS; Brookhaven 

Instruments BI-200SM) of the brine dispersed composites was performed by adding a small 

amount of the tested dispersions into filtered brine. The data was collected in triplicate at a 90° 

scattering angle for 3 min at room temperature and fitted using the CONTIN algorithm. 

Graphite Oxide Preparation Procedure: 10 g graphite (natural flake, Alfa Aesar, 2-15 um) 

was ball-milled at 30 Hz for 30 min, then dispersed in 200 mL conc. H2SO4 and stirred at 0 °C. 

30 g KMnO4 was added portionwise over a 2 h period so not to allow the temperature to exceed 

20 °C. The mixture was allowed to return to room temperature and stirred overnight, then 500 

mL of ice-water was added slowly. Following this, 20 mL of 30% H2O2 was added. 500 mL ice-

water was then poured into the reaction and stirred for 3 h. The resulting solids were then 

collected via ultracentrifugation and redispersed in 10% aq. HCl, and subsequently washed with 
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 7

copious amounts of DI water. The solids were then dialyzed against DI water until the water 

reached a pH of approximately 4.  

Synthesis of poly(vinylimidazole)-co-poly(aminostyrene) (Polymer I): 1-vinylimidazole, 4-

aminostyrene and DMSO were distilled prior to use. 1-vinylimidazole (2.51 g, 26.7 mmol), 4-

aminostyrene (0.32 g, 2.7 mmol), azobisisobutyronitrile (AIBN, 0.48 g, 0.29 mmol) and DMSO 

(5mL) were combined in a Schlenk tube with a stir bar (feed ratio imidazole:aniline::10:1). The 

mixture was degassed by freeze-pump-thaw (3 ×) and sealed under static inert atmosphere and 

stirred at 60 °C for four days. The resulting lightly yellow viscous solution was cooled and 

diluted by the addition of methanol. The mixture was precipitated into acetone (2 ×) and then 

dried overnight to produce a clear hard yellow solid. Polymer I was characterized by 
1
H NMR 

(MeOD-d4) as shown in SI Figure S4. 

Synthesis of Covalently Functionalized Polymer I – partially reduced graphene oxide (prGO) 

Composite: First, 15 mL of graphene oxide dispersed in deionized water (1 mg mL
-1

) was diluted 

up to a total volume of 30 mL with deionized water. l-Ascorbic acid (15.1 mg) was added and 

the mixture was stirred at 60 °C for one hour and then rapidly chilled to <5 °C and set aside for 

immediate use. Separately, polymer I (150.5 mg) was dissolved in methanol (50 mL) under mild 

sonication (5 min) and stirring. 48% aq. tetrafluoroboric acid (25.8 mg) was dissolved in 

deionized water (10 mL) and added to the methanol mixture. The solution was subsequently 

chilled to <5 °C. In separate vial, sodium nitrite (9.8 mg) was dissolved in deionized water (2 

mL) and likewise chilled. The sodium nitrite solution was added to the solution of polymer I 

with stirring and after 15 min the chilled partially reduced graphene oxide (prGO) dispersion was 

added slowly and stirred for 30 min. Afterward, the mixture was sonicated for 30 min and then 

stirred at 60 °C overnight. The cooled solution was concentrated in vacuo and then sufficient 
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 8

acetone was added to induce flocculation and the solids were collected by centrifugation (5k 

rpm; 15 min). The solids were air dried and used directly in the next step. 

Synthesis of Zwitterionic Polymer I – prGO Composite Dispersion: The above composite 

solids were sonicatively dispersed in methanol (100 mL) and then 1,3-propane sultone (350.2 

mg) was added. The mixture was refluxed under inert atmosphere overnight and then 30 mL of 

deionized water was added. Afterward the cooled solution was centrifuged (2.5k rpm, 15 min) 

and the supernatant was decanted. The remaining solids were washed with methanol and 

deionized water and after centrifugation the supernatant was combined with the previously 

collected solution. The methanol was removed from the supernatant in vacuo to afford the 

zwitterionic Polymer I – prGO composite as a dispersion in water (~45 mL) and stored in a 

sealed container. The remaining solids isolated from centrifugation were lyophilized. 

Preparation of Low Salinity Arab-D Brine: Sodium chloride (37.3 g), calcium chloride 

dihydrate (24.9 g), magnesium chloride hexahydrate (6.6 g), barium chloride (5 mg), sodium 

sulfate (0.3 g) and sodium bicarbonate (0.26 g) were dissolved to a total volume of 500 mL in 

high purity distilled water. 

Preparation of American Petroleum Institute (API) Brine: Sodium chloride (20.0 g) and 

calcium chloride dihydrate (5.0 g) were dissolved in high purity distilled water (225 mL). 

 

 

 

Table 1. Relative Weight 

Percentages of Salts in Brine 

Solutions 

Salt Species Arab D API 

NaCl 7.5% 8.0% 

CaCl2·2H2O 5.0% 2.0% 

MgCl2·6H2O 1.3% - 

BaCl2 0.001% - 

Na2SO4 0.006% - 

NaHCO3 0.005% - 
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 9

Brine Stability Testing of Zwitterionic Polymer I – prGO Composite at 90 °C: To two separate 

capped bottles with seals labeled Arab-D and API brine were added 90 mL of each respective 

brine solution. Then 10 mL of the composite in water were added to each to afford a 9:1 volume 

ratio. The bottles were sonicated for 5 min and then allowed to stand undisturbed in an oven set 

at 90 °C. Aliquots (3 mL) for characterization were taken immediately after preparation (before 

heating), after 24 hours (day 1) and again on days 10, 20, 30, and 140. Pictures were taken on 

those days in smaller scintillation vials and those solutions were promptly returned to the larger 

bottles (Figure 2). 

Results and Discussion 

The ability to introduce addressable nano-materials into oil reservoirs presents an opportunity 

for interrogating the internal state of oil wells with the goal of enhancing their output and 

productivity. In our preliminary evaluation of materials of interest we chose to pursue stable sub-

micron sized graphene oxide nanosheets as a platform material based broadly on the relative ease 

of modification of its basal plane through known chemistries and the potential to transport 

materials of interest. In order to establish baseline dispersion and stability, two testing brines 

were chosen: 1) low salinity Arab-D brine and 2) standard American Petroleum Institute (API) 

brine. Arab-D brine can be found in the largest oil well in the world known as the Ghawar field 

found in Saudi Arabia. Table 1 provides the relative weight percentages and salt compositions of 

the high salinity brines. As compared to the standard API brine, the Arab-D brine possessed a 

more complex salt mixture and a significantly higher content of divalent ion species like calcium 

chloride and magnesium chloride. 
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 10

Preliminary stability testing was performed on mixtures of water dispersed sub-micron sized 

graphene oxide (GO; average DLS determined sheet diameter of 338.2 ± 27.9 nm) with either 

the Arab-D or API brines.  These studies reveal that the GO was highly unstable in both brines 

immediately upon mixing and after 24 h at 90 °C, as shown in figure 1. 

XPS of the black flocculated materials after thorough washing (see Supporting Information 

Figure S2) revealed only the presence of calcium in addition to the rGO’s carbon and oxygen 

signals. This suggested that the primary cause of destabilization was probably the result of ionic 

crosslinking of the negatively charged GO sheets by the divalent calcium cations. 

As discussed in the introduction, it is known that zwitterionic species and polyzwitterions exhibit 

the antipolyelectrolyte effect that can provide dispersion stability in high ionic strength 

environments.
9
 Therefore, an imidazole-based sulfobetaine zwitterionic copolymer was 

developed containing aminostyrene groups. Specifically, a random copolymer of 1-

vinylimidazole and 4-aminostyrene with a molar feed ratio of 9:1 was prepared by radical 

polymerization initiated by AIBN in DMSO and polymerized at 60 °C for four days (Scheme 1). 

The aminostyrene groups permitted the use of diazonium chemistry
17-20 

for producing covalent 

attachments of the polymer chain directly to the graphene basal plane. Although the use of 

diazonium species to covalently decorate the basal plane of graphene is well-established, we 

believe that the use of a diazonium containing polymer in a ‘grafting-to’ approach is particularly 

advantageous in covalently functionalizing graphene with a relatively high number of functional 

groups.  

Covalent functionalization of the graphene sheets was carried out as shown in Scheme 1 by first 

preforming the diazonium salt of the aminostyrene groups present in polymer PVIM-co-PVPy 
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 11

under typical conditions with tetrafluoroboric acid and sodium nitrite in methanol. Separately, a 

partial reduction of GO was carried out by reaction with l-ascorbic acid at a low 1:1 weight ratio 

of GO:acid to increase the graphitic domains available for reaction with the diazonium species. 

The partially reduced GO (prGO) which remained dispersed in water was rapidly chilled and 

subsequently added to the diazonium containing PVIM-co-PVPy solution as shown in reaction 

scheme. A mass excess of the polymer PVIM-co-PVPy versus GO was used to promote more 

extensive functionalization of the graphene sheets. Using TGA, it was found that this 

functionalization resulting in extensive decoration of the graphene sheets, as approximately 37% 

of the mass in the composite can be attributed to polymer (Figure S5). 

 

 

Figure 2. Photographs of aliquots of stable composite dispersions in Arab 

D (above) and API (below) brines at initial preparation and after 1, 10, 20, 

30, and 140 days at 90 °C.  
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 12

The resulting polymer-prGO composite was isolated by precipitation, washed, and subsequently 

reacted with propane sultone in methanol to achieve a post-reaction functionalization of the 

imidazole groups to form the target imidazole-sulfobetaine groups and impart zwitterionic 

character on the prGO attached polymer chains. The resulting black dispersion was found to be 

highly stable and resisted isolation by centrifugation (even at 10,000 rpm for 10 min). Therefore, 

it was decided to isolate the fraction of the composite remained as a stable black aqueous 

dispersion in water after centrifugation by removal of the methanol solvent in vacuo.  The solids 

isolated by centrifugation may represent less functionalized materials and/or crosslinked 

aggregates composed of multiple sheets. The composite may owe some its stability as a 

dispersion in brine as a result of residual surface charges present. Although a purely zwitterionic 

polymer would be expected to have no net charge overall, the composite likely has negatively 

charged groups present from the prGO sheets helping to stabilize the material in water. 

Furthermore, we believe the covalent functionalization afforded by the diazonium chemistry to 

be essential to this stability, as when graphene oxide was mixed with a sulfonated polyimidazole 

synthesized in a similar manner, flocculation in brine occurred after two weeks at 90 °C (see SI 

experimental). The concentration of composite in aqueous dispersion was examined by drying a 

known volume of the dispersion in vacuo. The concentration of solids was approximately 11 

mg/mL. XPS analysis of the solids confirmed the presence of C, N, O and S in the composite 

sample as shown in Supporting Information Figure S3. Interestingly, the large amount of sulfur 

present in the XPS analysis suggests that in addition to alkylation of the polymer chain, some 

functionalization of the reduced graphene oxide sheet may have also occurred.   

The dispersibility and long-term stability testing at 90 °C of the aqueous composite dispersion 

was carried out in Arab D and API brines. The 100 mL dispersions were prepared by adding 10 
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 13

mL of the aqueous composite dispersion to 90 mL of the respective brines and sonication of the 

mixtures for 5 min to achieve homogeneous dispersions that were free of aggregates by visual 

inspection. After the initial preparation, a small aliquot of each dispersion was removed for 

spectroscopic (%T) and dynamic light scattering (DLS) characterization. The remainder of the 

dispersions in the Arab-D and API brines were allowed to stand undisturbed in an oven set at 90 

°C. After 24h (day 1) and on days 10, 20, 30, and 140 small aliquots were removed for 

characterization purposes as desired. Photographs of the aliquots taken showed no noticeable 

evidence of instability, flocculation or settling of the dispersed composite in either the Arab D or 

API brines after one month at 90 °C as shown in Figure 2. In order to monitor the dispersion 

stability quantitatively we examined the percent transmittance of the dispersions as shown in 

Figure 3. It was observed that the initial and day one data were essentially superimposable for 

the initial and day one curves in Arab-D and with only subtle differences were detected in the 

API brine. Lower transmittance was also observed in the ranges of 300 – 350 nm that was not 

present in the day 10, 20, 30, and 140 curves. GO possesses absorption bands in this region and 

their disappearance after 10 days is likely an indication of on-going thermal reduction process at 

the elevated brine temperatures. The most notable changes in the transmittance data were in the 

range of 500 – 600 nm. Examination of the %T values at the arbitrarily chosen wavelength of 

550 nm revealed that the transmittance changed most between the initial and first day and then 

remained essentially stable over the month long test period until day 140, where absorbance over 

the entire UV-Vis spectrum increased. This is likely due an increase in the concentration of 

graphene in the day 140 dispersion. 
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Figure 3. UV-Vis (top) spectra and DLS data of PVIM-co-PVPy solutions at 1 day, 10 days, 20 days, 30 days, and 140 

days at 90 °C. 
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 15

 

Visual inspection and spectroscopic data supported the conclusion that the polymer wrapped 

sheets were stable in these brines. Furthermore, the lack of observable precipitates/flocculants 

and the negligible changes in the monitored transmittance (as a function of time) suggested that 

polymer detachment was not occurring appreciably owning to the covalent attachment between 

the polymer and the basal plane. 

Further confirmation of the stability of graphene-polymer composites in brine was obtained from 

the examination of hydrodynamic diameter changes in samples kept at 90°C by DLS (Figure 3). 

Based on the DLS results, the average hydrodynamic diameter of the graphene oxide sheets in 

water was found to be 338.2 ± 27.9 nm. The data for the initially prepared composite dispersed 

in Arab-D brine demonstrated particles with a mean diameter of 770 ± 92 nm and in API brine a 

diameter of 1077 ± 218 nm. It was assumed that the composite dispersed in brine was comprised 

by pseudospherical nanoparticles consisting of partially reduced GO (prGO) nanosheets wrapped 

by attached zwitterionic polymer chains. In the high ionic strength environment of the brines, the 

electrolyte ions present can effectively screen the interactions of the zwitterionic sulfobetaine 

ionic groups and the chains can expand providing sufficient steric repulsion effect to solubilize 

and prevent aggregation/flocculation of the composite particles.
13,14

 The DLS measured 

diameters of the composite dispersion in Arab-D brine showed excellent stability over 30 days 

with stable mean diameters of ca. 750 nm. In the case of the API brine dispersed composite, the 

initial data points indicated particles of ca. one micron size in diameter that stabilized over time 

to a mean diameter of ca. 750 nm (based on the day 10, 20, 30, and 140 data points). 
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The excellent stability of the composite in the complex and higher ionic strength Arab-D brine 

(containing a higher content of divalent ion species, such as calcium (II) and magnesium (II)) 

was particularly promising.  It is further noted that the relative stability of the composite particles 

was for 140 days with no appreciable destabilization having occurred up to that point. Based on 

the data at hand, is likely that composite dispersions should have prolonged stability at elevated 

temperatures in brine.   

 

Conclusions 

Partially reduced graphene covalently functionalized with a polyzwitterionic polymer was 

synthesized and shown to display highly stable dispersions in the high salinity brines known as 

Arab-D and API at elevated temperatures for 140 days. These findings were well supported by 

the noted stability of the dispersions by visual inspection, spectroscopic monitoring and the 

relative stability of the particle sizes as determined by DLS. Creating brine stable graphene-

based systems has been a challenge and it is our view the functionalization of graphene basal 

plane, as reported herein, represents an attractive and useful platform. One could envision the use 

of these functional composites both as a carrier for delivery molecules and as a protective 

“wrapper” of nanomaterials. Furthermore, the polymer developed may be applicable in imparting 

brine stability to other types of particles or materials. The application of our polyzwitterion-

graphene system is of use in the petroleum industry for reservoir mapping and/or improving oil 

recovery.  In addition, the functionalization of the prGO nanosheets achieved through diazonium 

chemistry for covalent attachment of polymer chains to the basal plane of graphene will likely 

Page 16 of 21

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 17

find utility in the development of other graphene-polymer composites for various types of 

applications. 

ASSOCIATED CONTENT 

Supporting Information. Additional supporting information is provided detailing brine stability 

of a composite formed with non-covalently associated poly(1-vinylimidazole)-sulfobetaine 

polymer,  XPS spectra of graphene oxide flocculated in API brine and of the zwitterionic 

polymer I – prGO composite, the 
1
H NMR spectrum and HSQC of PVIM-co-PVPy, and the 

TGA graph of zwitterionic polymer I – prGO composite. This material is available free of charge 

via the Internet at http://pubs.acs.org. 
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