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Misfolded tau proteins are characteristic of tauopathies, but the isoform composition of tau inclusions
varies by tauopathy. Using aggregates of the longest tau isoform (containing 4 microtubule-binding
repeats and 4-repeat tau), we recently described a direct mechanism of toxicity that involves expo-
sure of the N-terminal phosphatase-activating domain (PAD) in tau, which triggers a signaling pathway
that disrupts axonal transport. However, the impact of aggregation on PAD exposure for other tau iso-
forms was unexplored. Here, results from immunochemical assays indicate that aggregation-induced

_[lf:ﬁg’:;s;;, increases in PAD exposure and oligomerization are common features among all tau isoforms. The
Alzheimer's disease extent of PAD exposure and oligomerization was larger for tau aggregates composed of 4-repeat isoforms
Oligomer compared with those made of 3-repeat isoforms. Most important, aggregates of all isoforms exhibited

Axon enough PAD exposure to significantly impair axonal transport in the squid axoplasm. We also show that

Aggregation PAD exposure and oligomerization represent common pathological characteristics in multiple tauo-

Microtubule-associated protein pathies. Collectively, these results suggest a mechanism of toxicity common to each tau isoform that
Pathological conformations likely contributes to degeneration in different tauopathies.

© 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction threads and neuritic plaques in AD, glial (astrocytic and oligoden-

droglial) inclusions in CBD and PSP, neuronal Pick bodies in PiD, or

A group of diseases collectively known as tauopathies are
characterized by the accumulation of abnormal forms of the
microtubule-associated protein called tau (Crowther and Goedert,
2000). In addition to Alzheimer’s disease (AD), this group of dis-
eases includes corticobasal degeneration (CBD), Pick’s disease (PiD),
progressive supranuclear palsy (PSP), frontotemporal dementia
with parkinsonism linked to chromosome 17, and chronic traumatic
encephalopathy (CTE), among others (Spillantini and Goedert,
2013). Each disease is characterized by pathognomonic tau in-
clusions, such as the neuronal neurofibrillary tangles, neuropil
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mixed neuronal and glial inclusions in CTE (Kovacs, 2015; McKee
et al., 2013; Yoshida, 2006). The clinical symptoms and affected
brain regions further differentiate tauopathies. Interestingly, there
is an apparent link between tau isoforms and different human
tauopathies, as there is some degree of specificity for certain tau
isoforms forming the pathognomonic tau inclusion of each disease
(Kovacs, 2015).

In the adult human central nervous system, tau is normally
expressed as 6 isoforms that are derived from alternative splicing of
3 exons (Wang and Mandelkow, 2016). Alternative splicing of exon
10, located in the second microtubule-binding repeat, gives rise to
isoforms containing either 4 or 3 microtubule-binding repeat do-
mains (4R or 3R, respectively). The 4R and 3R isoforms are further
separated into 3 distinct isoforms that contain either exons 2 and 3,
exon 2 only, or neither of these exons. Multiple studies provide
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evidence that tau isoforms exhibit differing properties in terms of
microtubule-binding affinity (Butner and Kirschner, 1991; Litersky
et al., 1993; Trinczek et al., 1995; Voss and Gamblin, 2009), micro-
tubule bundling (Chen et al.,, 1992; Kanai et al., 1989; Scott et al.,
1992), regulation of microtubule dynamics (Bunker et al., 2004;
Goedert and Jakes, 1990; Levy et al.,, 2005; Panda et al., 2003;
Scott et al., 1991; Trinczek et al., 1995), levels of expression during
development (Boutajangout et al., 2004; Goedert and Jakes, 1990;
Hong et al, 1998) and/or aggregate formation in vitro (Adams
et al, 2010; Combs et al., 2011; King et al., 2000; Voss and
Gamblin, 2009; Zhong et al, 2012). However, the biological
importance and disease relevance of each tau isoform remains
relatively unclear. In the context of human disease, the pathology of
AD and CTE is largely comprised of a mixture of 3R and 4R tau
isoforms, the inclusions in CBD, PSP, and frontotemporal dementia
with parkinsonism linked to chromosome 17 are primarily
composed of 4R isoforms, and PiD pathology mostly contains 3R tau
isoforms (Buee and Delacourte, 1999; Ferrer et al., 2014; Goedert
et al., 1992; Munoz et al., 2003; Sergeant et al., 1999; Yoshida,
2006). Although these differences are well documented, the ques-
tion of whether there are common or disease-specific mechanisms
of toxicity for different misfolded tau isoforms remains
unanswered.

Recently, our group identified inhibition of anterograde, kinesin-
1-dependent fast axonal transport (FAT) as a toxic mechanism for
disease-related forms of tau (Kanaan et al., 2013). Using the isolated
squid axoplasm preparation, this toxic effect of tau was found to be
mediated, at least in part, by pathological changes in tau confor-
mation that expose an N-terminal motif termed the phosphatase-
activating domain (PAD; Kanaan et al., 2011, 2012; LaPointe et al.,
2009). Several modifications promoted aberrant PAD exposure,
including phosphorylation, filament formation, and oligomeriza-
tion. The latest is of particular interest because soluble prefibrillar
tau aggregates appear to represent toxic forms of tau in several
tauopathy models and may play a role in the spreading of tau pa-
thology from cell-to-cell (Cardenas-Aguayo Mdel et al., 2014; Lewis
and Dickson, 2016; Ward et al., 2012). The PAD in tau is involved in a
signaling pathway whereby exposure of PAD activates protein
phosphatase 1 (PP1), which in turn activates glycogen synthase
kinase 3 (GSK3) via dephosphorylation of serine 9. Active GSK3
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phosphorylates kinesin light chains causing cargo dissociation and
disruption of fast anterograde axonal transport (Morfini et al.,
2002). Previously, all studies demonstrating inhibition of axonal
transport by pathogenic forms of tau have used the longest 4R tau
isoform. Therefore, the question of whether aggregates of all 6
human isoforms oligomerize, display PAD, and inhibit axonal
transport has not been evaluated. Such information would help to
identify the extent to which PAD exposure contributes to toxicity in
human tauopathies that display pathology comprised of different
tau isoforms. In this work, we evaluated levels of PAD exposure,
oligomer formation, and axonal transport toxicity for aggregates
composed of each of the 6 human tau isoforms.

2. Materials and methods
2.1. Recombinant tau proteins

Six human isoforms of tau protein are created by alternative
splicing in the adult central nervous system (Fig. 1A). Inclusion or
exclusion of exon 10 creates 2 isoform categories that contain either
4 or 3 microtubule-binding repeat domains (i.e., 4R or 3R isoforms),
respectively (Wang and Mandelkow, 2016). The 4R and 3R isoforms
are further divided into 3 separate isoforms by alternative splicing
of 2 N-terminal exons and contain either both (exons 2 and 3, 2N), 1
(exon 2,1N), or 0 (neither exon 2 nor exon 3, ON) of these exons. The
isoform containing 2N4R is hT40 (441 amino acids), 1N4R is hT34
(412 amino acids), ON4R is hT24 (383 amino acids), 2N3R is hT39
(410 amino acids), IN3R is hT37 (381 amino acids), and ON3R is
hT23 (352 amino acids). All constructs were expressed in Escher-
ichia coli using the pT7c plasmid and each contained a C-terminal
6x histidine tag for purification. DNA sequences were verified by
sequencing before use in protein production. Recombinant proteins
of each isoform were purified using immobilized metal affinity
chromatography (Talon resin, 635502, Clontech) followed by size
exclusion chromatography over an S200 column (26/60, 17-1195-
01, GE Healthcare) using methods similar to those described
(Carmel et al., 1994, 1996). Proteins (in 250-mM NaCl, 10-mM HEPES
(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), pH 7.4, 0.1-
mM EGTA (ethylene glycol-bis(B-aminoethyl ether)-N,N,N’,N’-
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Fig.1. Schematic of 6 human tau isoform proteins expressed in the adult central nervous system. (A) Each naturally occurring tau isoform is generated through alternative splicing of
exons 2 (yellow), 3 (green), and 10 (within the second microtubule-binding regions [MTBR]). Each isoform contains the PAD epitope (red) corresponding to amino acids 2-18 and the
tau oligomeric complex epitope (blue) mapped to amino acids 209-224 on hT40. There are 3 isoforms with 4 MTBRs, 1 with E2 and E3 (hT40, 2N4R, and 441 amino acids), E2 and not
E3 (hT34, 1N4R, and 412 amino acids), and 1 with neither E2 nor E3 (ht24, ON4R, and 383 amino acids). There are 3 isoforms with 3 MTBRs, 1 with E2 and E3 (hT39, 2N4R, and 410
amino acids), E2 and not E3 (hT37, 1N4R, and 381 amino acids), and 1 with neither E2 nor E3 (ht23, ON4R, and 352 amino acids). (B) Each recombinant tau isoform protein was run in
SDS-PAGE, and the gel was stained with Coomassie to show each protein (3 pg/lane) and demonstrate equivalent amounts of each protein used in our preparations. Abbreviation:
PAD, phosphatase-activating domain. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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tetraacetic acid), and 1-mM dithiothreitol) were quantified using an
SDS (sodium dodecyl sulfate) Lowry protein assay.

The SDS Lowry was performed by adding bovine serum albumin
(BSA) protein stock (2 mg/mL, 23,209, Thermo Scientific) or un-
known, purified tau protein stocks to SDS solution (2% SDS, 5% -
mercaptoethanol, 10% glycerol, 62.5-mM Tris, pH 6.8) to a final
volume of 100 pL. BSA protein standards of 0, 2, 4, 8, 16, and 32 pug
were used, and blank samples without tau protein were used for the
tau samples. The proteins were precipitated by adding 1 mL of 10%
perchloric acid and/or 1% phosphotungstic acid to each sample and
incubated 1 hour on ice. The samples were centrifuged at 18,000 x g
for 15 minutes at 4 °C, and the supernatant was removed. After air-
drying the protein pellet, it was dissolved in 1 mL of Lowry solution
(0.01% CuS0Og4, 0.02% sodium potassium tartate, and 2% sodium
carbonate in 0.1 N sodium hydroxide) and incubated at room tem-
perature for 10 minutes. Then, 100 pL of Folin-Ciocalteu’s phenol
reagent (diluted 1:1 in water, F9252, Sigma-Aldrich) was added and
incubated for 30—45 minutes at room temperature. Then, absor-
bance at 750 nm was measured using a spectrophotometer. Tau
protein concentrations were interpolated from the BSA standard
curve (linear regression, r* = 0.994). The protein was aliquoted into
10—50 pL and frozen at —80 °C until used in experiments outlined in
the following sentences. Purified tau protein isoforms were visual-
ized using SDS-PAGE and Coomassie staining (Fig. 1B) to confirm
protein quality and consistency in protein assay results across the
isoforms. It is noteworthy that this specific protein assay is routinely
used by our group and produces consistent results in our hands.

2.2. In vitro tau polymerization reaction

Tau aggregation was induced with arachidonic acid (ARA;
90,010, Cayman Chemical) using methods similar to those previ-
ously described (Kanaan et al., 2012). Briefly, recombinant tau
(2 uM) was incubated in polymerization buffer (5-mM dithio-
threitol, 100-mM NaCl, 0.1-mM ethylenediaminetetraacetic acid,
10-mM HEPES, pH 7.6) with 75-uM ARA at room temperature for
6 hours. ARA was stored at —20 °C, and working solutions were
prepared in 100% ethanol immediately before use. To obtain
monomeric control samples, tau (2 pM) was prepared in polymer-
ization buffer with ARA vehicle (ethanol), immediately aliquoted,
and then stored at —80 °C. The extent of aggregation was deter-
mined using a combination of the right-angle laser light scatter
(LLS) assay, thioflavin S (ThS) fluorescence, and transmission elec-
tron microscopy as described in the following paragraphs.

2.3. Right-angle LLS assay

A right-angle LLS system was used to measure the intensity of
scattered light (Is) as described in the study by Gamblin et al.
(2000). Briefly, the system was composed of a 475-nm laser
(BWI-475-20-E, B&RW Tek, Inc), a high-sensitivity CMOS digital
camera (DCC1240M, Thor Labs) and imaging software uc480
Viewer version 4.2. Images of scattered light were captured after
6 hours of polymerization at room temperature, a time at which a
steady state of polymerization has been reached (Gamblin et al,,
2000; Sarthy and Gamblin, 2006). Images were analyzed in Pho-
toshop v12.1 (Adobe Systems) using the marquee tool to select a
region of interest (75 x 10 pixels) within the scattered light band
near the middle of the cuvette. The pre-ARA baseline Is was sub-
tracted from each post-ARA Is measurement. Each experiment was
repeated 4 independent times, and background-corrected intensity
of Is was used for comparisons.

2.4. ThS fluorescence assay

The formation of p-sheet structures was measured after 6 hours
of polymerization at room temperature using a ThS fluorescence
assay. A 0.0175% solution of ThS (T1892, Sigma) was prepared on the
day of each experiment and cleared through a 0.22-pm filter before
use. For each sample, 6 pL of ThS was added to 150 pL of 2-uM
monomer or aggregated tau in a black 96-well plate (06-443-2,
Fisher Scientific). After 20 minutes incubation at room temperature,
fluorescence measurements were made using a Promega GloMax
Multi Detection System with an excitation wavelength of 490 nm
and an emission wavelength of 510—570 nm. Background fluores-
cence was measured in wells containing tau monomers with ARA
vehicle (i.e., ethanol) and subtracted from each respective aggre-
gate condition. Each experiment was repeated 4 independent
times.

2.5. Transmission electron microscopy

Transmission electron microscopy was used to visualize the
morphology of aggregates formed by each isoform after 6 hours of
polymerization at room temperature as described in the study by
Kanaan et al. (2012). A 10-uL aliquot of each 2-pM monomeric or
polymerized tau sample was fixed with 2% glutaraldehyde (tau was
1.6-uM final concentration), spotted onto 300 mesh formvar
carbon-coated copper grids (FCF300-Cu, Electron Microscopy Sci-
ences), and negatively stained with 2% uranyl acetate. Grids were
examined with a JEOL JEM-1400 Plus electron microscope at 80 kV
and 10,000x magnification. Images were captured with an AMT
XR81 digital camera and AMT software version 602.6 (Advanced
Microscopy Techniques).

2.6. Soluble tau extraction from fresh-frozen human tissue

Fresh-frozen frontal cortex tissue from nondemented control,
PiD, CBD, and AD cases (n = 4 per group) were obtained from the
Brain Bank of the Cognitive Neurology and Alzheimer’s Disease
Center at Northwestern University. For detailed human subject in-
formation see Table S1. Soluble tau and sarkosyl-insoluble tau
fractions were obtained as described previously in the study by
Kanaan et al. (2016). Briefly, tissue pieces (0.5—1 g) were homoge-
nized on ice in 10 volumes (1 g = 10 mL) of brain homogenization
buffer (50-mM Tris pH 7.4, 274-mM NaCl, 5-mM KCl, 1-mM PMSF
[phenylmethanesulfonyl fluoride], and 10 ug/mL each of pepstatin,
leupeptin, bestatin, and aprotinin). The soluble tau fraction was
collected in the supernatant after centrifugation at 27,000 x g for
20 minutes at 4 °C. The following pellet was homogenized in brain
pellet homogenization buffer (10-mM Tris pH 7.4, 800-mM Nacl,
10% sucrose, 1-mM EGTA, 1-mM PMSF) and centrifuged using same
parameters as previously mentioned. The supernatant was
collected, 1% sarkosyl (final concentration) was added, samples
were incubated at 37 °C for 1 hour, and then centrifuged at
200,000 x g for 1 hour at 4 °C. Then, the final pellet was resus-
pended in 1 mL of brain pellet homogenization buffer to obtain the
sarkosyl-insoluble tau fraction. Both the soluble tau and sarkosyl-
insoluble tau fractions were assayed for total protein concentra-
tion using the SDS Lowry protein assay and stored at —80 °C until
used in sandwich ELISAs for analysis (see in the following
paragraphs).

2.7. Antibodies
Four tau antibodies were used in this study to characterize ag-

gregates composed of each tau isoform. The Tau5 antibody (mouse
monoclonal IgG1, Binder/Kanaan Lab) recognizes aa 210-230
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(Carmel et al, 1996) and is unaffected by phosphorylation or
conformation. The TNT1 antibody (mouse monoclonal IgG1, Binder/
Kanaan Lab) was made against PAD (i.e., amino acids 2-18 and
epitope between 7 and 12) and is a useful marker of PAD exposure
in nondenaturing assays (Combs et al., 2016; Kanaan et al., 2012,
2016). The TOC1 antibody (mouse monoclonal IgM, Binder/
Kanaan Lab) has an epitope between 209 and 224 and selectively
recognizes oligomeric tau aggregates compared with monomeric or
filamentous aggregates (Patterson et al., 2011a; Ward et al., 2013).
The R1 antibody (Binder Lab) is a rabbit polyclonal pan-tau anti-
body with numerous epitopes throughout the tau protein (Berry
et al., 2004).

2.8. Tau sandwich enzyme-linked immunosorbent assays

Sandwich enzyme-linked immunosorbent assays (ELISAs) were
used to measure the relative levels of total tau, PAD-exposed tau, and
oligomeric tau in recombinant tau protein samples and tau isolated
from the frontal cortex of human brains (Kanaan et al., 2016). All
steps were performed at room temperature. Wells were washed
between each step using 200 pL/well of ELISA wash buffer (100-mM
borate acid, 25-mM sodium borate, 75-mM Nacl, 0.25-mM thimer-
osal, 0.4% [w/v] bovine serum albumin, 0.05% [v/v] Tween-20), and
50 pL solution per well was used for all other steps.

For sandwich ELISAs with recombinant tau samples, Tau5
(2 pg/mL), TNT1 (2 pg/mL), or TOC1 (2 pg/mL) capture antibodies
were diluted in borate saline (100-mM borate acid, 25-mM sodium
borate, 75-mM Na(l, and 0.25-mM thimerosal) and applied at 50 pL
solution per well to coat high-binding 96-well microplates (catalog
#07-200-35, Fisher Scientific) for 60 minutes. Plates were washed
twice with ELISA wash buffer, and then blocked for 60 minutes with
ELISA wash containing 5% nonfat dry milk (block solution). Two
washes were performed, and then recombinant tau samples were
added to each well for 90 minutes. Tau monomers or aggregates
from the in vitro polymerization assays were diluted with poly-
merization buffer to a final concentration of 5 nM (Tau5 assays),
100 nM (TNT1 assays), or 150 nM (TOC1 assay). Titer assays for each
version of the sandwich ELISA were performed to ensure assays
were within the linear range. Wells were rinsed 3 times and then
incubated with R1 diluted 1:20,000 (50 ng/mL) in block solution for
90 minutes, to serve as the detection antibody. Wells were washed
3 times, and then incubated for 60 minutes with goat anti-rabbit
IgG conjugated to horseradish peroxidase (1:5000; PI-2000, Vec-
tor Labs) diluted in block solution. Wells were washed 3 times, and
assays were developed using 3,3',5,5’-tetramethylbenzidine (TMB;
T0440, Sigma) for 20 minutes (Tau5 and TNT1 assays) or 35 minutes
(TOC1 assay). The reactions were stopped with 3.5% sulfuric acid,
and absorbance was read at 450 nm on a SpectraMax Plus 384
microplate reader (Molecular Devices). The amount of total tau
applied in the assay was known and equivalent between groups
since purified recombinant protein samples were used, but absor-
bance (A) is not linear (i.e., A = Logio(1/transmittance)) and not
useful for comparing across samples. Thus, the absorbance data
were converted to percent absorbed light (a linear scale) using the
following equation %A = (1-10%)*100, where x is absorbance. Since
R1 is a polyclonal anti-tau antibody, the percent light absorbed data
from the TNT1 and TOC1 assays were normalized to the data from
the Tau5 assays (i.e., total tau levels) to account for any R1-based
detection variations with different tau isoforms. The normalized
data were used for statistical comparisons across groups.

The same protocol was used to measure the levels of total tau,
PAD exposure and tau oligomers in soluble and sarkosyl-insoluble
tau fractions of the frontal cortex from control, PiD, CBD, and AD
brains (n = 4 per group; Table S1). All steps were identical with the
exception that human brain samples were used. The samples were

diluted to a final total protein concentration of 0.4 pg/uL (i.e., 20 pg/
well) for soluble tau fractions or 0.08 pg/uL (i.e., 4 pg/well) for
insoluble tau fractions. The protein amount was determined in titer
experiments to ensure the ELISAs were performed within the linear
rage. Tau standard ELISAs were performed simultaneously with
human sample sandwich ELISAs to estimate the amount of tau
captured by Tau 5, TNT1 or TOC1, and detected with R1. A serial
dilution of recombinant hT40 monomer (ranging from 250 to
1.0 ng/well) was bound to the ELISA plate for 60 minutes, then
blocked as previously mentioned, and detection was performed
using R1, and then the horseradish peroxidase-secondary antibody
exactly as in the sandwich ELISAs. Each standard was run in
duplicate and developed simultaneously with the sandwich ELISAs
to ensure accurate interpolation of unknown tau amounts. The
standard curve data were logjo transformed and best fit to a
sigmoidal curve (> = 0.998). This provided a standard curve of
absorbance values that were derived from R1 reactivity with known
amounts of tau protein. The quantity of tau (ng) in each human
sample was interpolated from the tau standard curves and then
converted to a concentration of ng/uL by dividing the interpolated
quantity by the volume of the sample used (i.e., 50 pL). Finally, the
data (i.e., concentrations of tau) were normalized to reduce skew-
ness using logarithmic transformations and then used for statistical
comparisons.

2.9. Immunoblotting

Monomeric and aggregated tau samples were prepared in
Laemmli sample buffer (20-mM Tris pH 6.8, 6% glycerol [v/v], 1.6%
sodium dodecyl sulfate [v/v], 0.85% 2-mercaptoethanol [v/v],
0.002% Bromophenol blue [v/v]), incubated at 90 °C for 5 minutes,
separated by SDS-PAGE using 4%—20% Criterion TGX precast gels
(5671094, Bio-Rad Laboratories) and transferred to 0.22-um nitro-
cellulose membranes (66,485, Pall Corporation, Pensacola, FL, USA).
Membranes were blocked with 2% nonfat dry milk in Tris-buffered
saline (TBS; 50-mM Tris, 150-mM NaCl, pH 7.4), and incubated
overnight at 4 °C in Tau5 (1:100,000), TNT1 (1:300,000), or TOC1
(1:5000). Membranes were rinsed in TBS + 0.1% Tween 20 and
developed with the goat anti-mouse IgG (H+L) IRDye 680LT sec-
ondary antibody (1:20,000; 926-68,020, LiCor) for TNT1 blots, or
goat anti-mouse IgG (H+L) IRDye 800LT secondary antibody
(1:20,000; 926-68,020, LiCor) for Tau5 and goat anti-mouse IgM
IRDye 680LT secondary antibody (1:20,000; 926-68,080, LiCor) for
TOC1 blots. Image acquisition and intensity measurements were
performed using a LiCor Odyssey system.

To confirm the preferential involvement of specific tau isoforms
in different tauopathy pathologies, the insoluble tau fractions were
processed for isoform identification on Western blots. Samples of
sarkosyl-insoluble tau fractions (50 pL) were solubilized in a 6-M
guanidine-HCI for 1.5 hours at room temperature and then dia-
lyzed (3500 Da cutoff, #69550, Pierce) against TBS (pH 7.4) over-
night at 4 °C. The resultant samples were precipitated using 10%
trichloroacetic acid for 2 hours on ice, followed by centrifugation at
14,000 x g at 4 °C for 30 minutes. The pellets were washed
with —20 °C acetone, centrifuged again at 14,000 x g for 20 mi-
nutes, and air-dried before resuspending in 40 uL of 1x FastAP
Buffer (10-mM Tris-HCl, pH 8.0, 5-mM MgCl,, 100-mM KCl, 0.02%
Triton X-100, and 100 pg/mL BSA), then sonicated, and then
dephosphorylated by adding 4-pL FastAP thermosensitive alkaline
phosphatase (#EF0651, Thermo Scientific) and incubating at 37 °C
for 1.5 hours. After dephosphorylation, 20 pL of 6x Laemmli sample
buffer was added, and the samples were prepared as previously
mentioned for separation on 10% TGX criterion gels (#5671033,
BioRad) and transferred to nitrocellulose as previously mentioned.
Due to proteolytic processing of the termini of tau proteins within
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inclusions in tauopathies, we probed the membranes simulta-
neously with a combination of monoclonal mouse IgG1 antibodies
with epitopes covering the protein: Taul3 is an N-terminal mono-
clonal antibody (epitope between aa8-9/13-21 [Combs et al., 2016]),
Tau5 is a midtau monoclonal antibody (epitope between aa
210-230 [Carmel et al., 1996]) and Tau7 is a C-terminal monoclonal
antibody (epitope between aa 430-441 [Horowitz et al., 2006]). The
signal was detected using goat anti-mouse IgG1 IRDye 680LT sec-
ondary antibody (1:20,000; 926-68,050, LiCor) and imaged as
previously mentioned.

2.10. Squid axoplasm motility assay

FAT was measured in freshly extruded squid axoplasm (Loligo
pealei; Marine Biological Laboratory, Woods Hole, MA, USA) as
previously described (Kanaan et al., 2011, 2012; LaPointe et al.,
2009). Recombinant tau samples (monomer or aggregate) were
diluted in X/2 buffer (175-mM potassium aspartate, 65-mM taurine,
35-mM betaine, 25-mM glycine, 10-mM HEPES, 6.5-mM MgCl,,
5-mM EGTA, 1.5-mM CaCl,, 0.5-mM glucose, 10-mM adenosine
triphosphate, and pH 7.2) and perfused into isolated axoplasm at a
final concentration of 2 pM (physiological range of tau; Alonso et al.,
1996; King et al., 1999). Motility was analyzed using a Zeiss Axiomat
microscope equipped with a 100x (1.3 numerical aperture) objec-
tive and differential interference contrast optics. Images were ac-
quired using a Model C2400 CCD through a Hamamatsu Argus 20
and further process using a Hamamatsu Photonics Microscopy
C2117 video manipulator for image adjustment and generation of
calibrated cursors and scale bars. The rate of anterograde and
retrograde FAT was measured by matching calibrated cursor
movements to the speed of vesicles moving in the axoplasm over
50 minutes, and data were plotted as a function of time (Song et al.,
2016). The average velocity of transport over the last 20 minutes of
the assay was compared between monomer and aggregates of each
isoform.

2.11. Triple-label immunofluorescence for confocal microscopy

Triple-label immunofluorescence (IF) was used to characterize
the colocalization between PAD exposure (TNT1), oligomers
(TOC1), and total tau pathology (R1). Most important, the sections
were fixed with paraformaldehyde, a small molecule cross-linker,
that does not readily disrupt protein structure (Mason and
O’Leary, 1991; Rait et al., 2004), and the fixed, free-floating sec-
tions were not exposed to denaturants (e.g., heat or alcohols), to
allow conformational differences to remain intact in the tissue
sections. Tissue sections from age-matched, nondemented controls
(n = 3), CBD (n = 4), PiD (n = 4), and AD cases (n = 3; Table S1)
were processed for triple-label IF using the TNT1 (mouse IgG1),
TOC1 (mouse IgM), and R1 (rabbit) antibodies according to pub-
lished methods (Kanaan et al., 2016). The sections were incubated
overnight at 4 °C in a primary antibody solution containing TNT1
(1:30,000), TOC1 (1:2000), and R1 (1:2500) antibodies followed by
incubation in a secondary antibody solution of Alexa Fluor 488
goat anti-mouse IgG1-specific (A-21121, Invitrogen), Alexa Fluor
568 goat anti-mouse IgM-specific (A-21043, Invitrogen), and Alexa
Fluor 647 goat anti-rabbit specific (A-21244, Invitrogen) antibodies
(all diluted 1:500) for 2 hours. Following the staining procedure,
sections were mounted on microscope slides, autofluorescence
was blocked using 2% sudan black, and the sections were cover-
slipped using hardset Vectashield mountant. Control sections with
1 of the 3 primary antibodies omitted confirmed that each sec-
ondary label was specific to the appropriate primary antibody (i.e.,
no staining was observed with the fluorophore for the omitted
antibody; Fig. S1A—L). A Nikon Al+ laser scanning confocal

microscope system equipped with solid-state lasers (488, 561, and
640), and Nikon Elements AR software were used to acquire image
z-stacks (0.5-pum step size), and the images (maximum intensity
projections) were prepared for publication using Adobe Photoshop
and Illustrator.

2.12. Statistics

All experiments were repeated at least 3 independent times. The
data were assessed for meeting normality and equal variance as-
sumptions using the D’Agostino-Pearson normality test and the
Brown-Forsythe variance test, and when both were not met, the
data were analyzed using nonparametric statistical tests (as indi-
cated in the following sentences). In the recombinant tau protein
experiments, normality tests were run by combining the 4R
monomers (n = 12), 4R aggregates (n = 12), 3R monomers (n = 12),
and 3R aggregates (n = 12) to obtain large enough sample sizes for
better measuring normality. The human brain lysate data were log
transformed to normalize the data as described previously. Exper-
iments were analyzed by Student’s t-test or Mann—Whitney test,
with a 1-way analysis of variance (ANOVA) or Kruskal—-Wallis test,
or with a 2-way ANOVA as indicated in the results and figure leg-
ends. When overall significance was achieved, the Holm—Sidak
post-hoc test (for ANOVAs) or the Dunn post-hoc test (for Krus-
kal—Wallis) was used to make all possible comparisons. Data were
expressed as mean + standard error of mean. All tests were two-
tailed, and significance was set at p < 0.05. GraphPad Prism 6
software (GraphPad Software, Inc, LaJolla, CA, USA) was used for all
statistical tests.

3. Results
3.1. In vitro aggregation of tau isoforms

Recombinant proteins corresponding to all tau isoforms were
expressed in bacteria (Fig. 1B) and induced to aggregate in vitro at
near physiological levels (i.e., 2 pM) using ARA (Alonso et al.,
1996; King et al.,, 1999). Three well-established assays were
used to measure the extent of tau isoform aggregation. Right-
angle laser light scattering showed significantly greater scat-
tered light intensity in all 4R tau isoforms when compared to 3R
isoforms (1-way ANOVA with Holm—Sidak post-hoc, Fs, 18) =
60.22, p < 0.0001; Fig. 2A). hT40 showed the highest amount of
light scattering compared to other 4R isoforms, and there were no
differences between the different 3R isoforms. Similar results
were seen in the ThS assay, where the 4R isoforms were signifi-
cantly higher than 3R isoforms (1-way ANOVA with Holm—Sidak
post-hoc, Fs, 18y = 19.99, p < 0.0001; Fig. 2B), and no differences
were found in comparisons between the individual 4R isoforms
or between the 3R isoforms. Interestingly, 4R tau isoforms
formed morphologically distinct aggregates compared to 3R
isoforms (Fig. 2C—H). A mixture of long, intermediate, and short
filaments, as well as globular oligomers was present in 4R isoform
reactions (Fig. 2C—E). In contrast, 3R isoforms were primarily
composed of globular oligomers, and only very rare long fila-
ments were found (Fig. 2F—H). Monomer samples were imaged to
confirm the lack of aggregation, and as expected, the grids did not
contain any aggregates (data not shown).

3.2. PAD exposure and oligomerization of tau isoforms

Nondenaturing sandwich ELISAs (Kanaan et al., 2016) were used
to determine the levels of PAD exposure (TNT1 reactivity) in the
isoform samples (Fig. 3A). The monomer groups were not normally
distributed and did not display equal variance, thus nonparametric
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Fig. 2. Characterization of 4R and 3R isoform aggregation induced by arachidonic acid in vitro. (A) After 6 hours of polymerization, scattered laser light signal (Is) from all three 4R
isoforms is significantly greater than the 3R isoforms. Among the 4R isoforms, hT40 signal was significantly higher than hT34 and hT24, and within the 3R isoforms, all 3R constructs
produced similar light scattering (one-way ANOVA, Holm-Sidak post-hoc comparisons: **p < 0.05 versus hT40 all other groups and *p < 0.05 versus all 3R isoforms, n = 4 per
group). (B) Thioflavin S (ThS) fluorescence, a marker for B-sheet structures in aggregated tau, was significantly higher in all 4R tau isoforms compared with each 3R isoform. No
differences were found between the different 4R or between the different 3R tau isoforms (one-way ANOVA, Holm—Sidak post-hoc comparisons: *p < 0.05 versus all 3R isoforms,
n = 4 per group). All graphed values represent mean + SEM. (C—H) Representative electron micrographs of hT40 (C), hT34 (D), hT24 (E), hT39 (F), hT37 (G), and hT23 (H) aggregates
polymerized in the presence of arachidonic acid. The 4R tau isoforms formed a range of short, intermediate, and longer filaments compared with 3R tau isoforms, which formed
mostly globular oligomeric aggregates and only rare filaments. Scale bar = 600 nm (applies to all panels). Abbreviations: ANOVA, analysis of variance; SEM, standard error of mean.

tests were used for comparisons including monomers. Comparisons
between isoform monomers showed that hT39 monomer signal was
significantly higher than hT24 and hT23 monomers (Kruskal—Wallis
ANOVA with Dunn’s post-hoc, H = 18.4, p = 0.0025). The hT24 ag-
gregates showed the highest TNT1 signal, which reached signifi-
cance compared with hT40, hT39, hT37, and hT23 aggregates (1-way
ANOVA with Holm—Sidak post-hoc, F5, 18y = 19.11, p < 0.0001).
Aggregates of all 6 tau isoforms showed significant increases in
TNT1 reactivity when compared with their respective monomer
samples (Fig. 3A; Mann—Whitney test, for all comparisons p =
0.029).

Sandwich ELISAs were used to determine the levels of tau
oligomers (TOC1 reactivity) in the isoform samples (Fig. 3B). The
monomer groups were not normally distributed and did not display
equal variance, thus nonparametric tests were used for compari-
sons including monomers. Comparisons between isoform mono-
mers showed that hT39 monomer signal was significantly higher

than hT24 and hT23 monomers (Kruskal-Wallis ANOVA with
Dunn’s post-hoc, H = 18.6, p = 0.0023). The hT24 aggregates
showed the highest TOC1 signal, which reached significance
compared with hT40, hT39, hT37, and hT23 aggregates, while hT34
aggregates were significantly different from hT39, hT37, and hT23
aggregates, and both hT40 and hT39 aggregates are significantly
higher than hT37 and hT23 (1-way ANOVA with Holm—Sidak
post-hoc, Fs, 13y = 50.77, p < 0.0001). Aggregated samples for all 6
isoforms showed significant increases in TOC1 reactivity when
compared with their respective monomer samples (Fig. 3B; Man-
n—Whitney tests, for all comparisons p = 0.029).

The same samples were denatured and run in SDS-
polyacrylamide gel electrophoresis (PAGE) and Western blotting
to confirm that the differences TNT1 and TOC1 reactivity were
conformation-dependent. As expected, monomer and aggregated
samples of all 6 tau isoforms showed equal reactivity for TNT1 and
TOC1 when the samples were denatured because this exposes the
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Fig. 3. Biochemical analysis of PAD exposure and oligomerization for all tau isoforms. (A, B) Sandwich ELISAs were used as nondenaturing assays to capture PAD-exposed tau (A,
TNT1 capture antibody) and tau oligomers (B, TOC1 capture antibody), with detection of captured tau using the rabbit pan-tau antibody, R1. (A) The TNT1 ELISAs show significantly
higher signal in aggregated samples compared with monomeric samples for each tau isoform. TNT1 signal was the highest in hT24 aggregates, which reached significance compared
with hT40, hT39, hT37, and hT23 aggregates. hT40, hT34, and hT39 aggregates were significantly higher when compared with hT37 and hT23 aggregates. hT39 monomers were
significantly different compared with hT34, hT24, hT37, and hT23 monomers. (B) Similarly, the TOC1 ELISAs show significantly higher signal in aggregated samples compared with
monomeric samples for each tau isoform. TOC1 signal was the highest in hT24 aggregates, which reached significance when compared with hT40, hT39, hT37, and hT23 aggregates.
hT40 and hT39 aggregates were significantly greater than hT37 and hT23 aggregates, while hT34 aggregates were significantly higher when compared hT39, hT37, and hT23. hT39
monomers were significantly different compared with hT24, hT37, and hT23 monomers. The data were compared using the Kruskal—Wallis ANOVA with Dunn post-hoc (isoform
monomers), one-way ANOVA with Holm—Sidak post-hoc (isoform aggregates), and the Mann—Whitney test (monomers vs. aggregates). *p < 0.05 versus the monomer of the same
isoform; **p < 0.05 versus hT37 and hT23 aggregates; ***p < 0.05 versus hT40, hT39, hT37, and hT23 aggregates; #p < 0.05 versus hT24 and hT23 monomers. (C—H) The same
samples that were used for sandwich ELISAs were analyzed using SDS-PAGE and/or Western blotting as a denaturing assay (5 pL of 2-uM sample loaded in each lane). In TNT1 and
TOC1 blots, the monomer and aggregate samples produced equal signal (Tau5 was used to normalize TNT1 and TOC1 signals, Student’s t-test, all p > 0.05) because denaturation of
the proteins exposes the epitopes making them equally accessible. Collectively, these data indicate that all tau isoforms have PAD exposed and form oligomers when induced to
aggregate in vitro, and TNT1 and TOC1 strongly label aggregated forms of all tau isoforms, not monomers, in a conformation-dependent manner. Abbreviations: ANOVA, analysis of
variance; ELISA, enzyme-linked immunosorbent assays; PAD, phosphatase-activating domain; SEM, standard error of mean.

epitopes making them equally accessible (Student’s t-tests, for all The anterograde FAT data were compared using a 2-way ANOVA,

comparisons p > 0.05; Fig. 3C—H). and overall significance was achieved for both factors (tau isoforms:
F(536) =4.487,p = 0.003; and tau species: F(13s)=66.21,p < 0.0001)

3.3. Tau isoform aggregates inhibit FAT in isolated squid axoplasm but not the interaction (F536) = 0.859, p = 0.518). Perfusion of hT40,
hT34, and hT24 aggregates into squid axoplasms significantly

The effect of isoform-specific tau aggregates on FAT was evalu- impaired anterograde transport (Fig. 4A) when compared with the

ated using the isolated squid axoplasm model system as in our prior respective monomers (all at 2 pM). Similarly, perfusion of squid
studies (Kanaan et al, 2011, 2012; LaPointe et al, 2009). axoplasms with hT39, hT37, and hT23 aggregates significantly
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Fig. 4. Aggregates of all 6 tau isoforms significantly inhibit anterograde fast axonal transport (FAT) in the isolated squid axoplasm. (A, B) Squid axoplasms were perfused with each
tau isoform (2 pM) in monomeric or aggregated forms, and FAT rates in both anterograde and retrograde directions were measured. (A) Quantification of average anterograde FAT
rates during the last 20 minutes of the squid axoplasm assay indicate that aggregated forms of all 6 tau isoforms significantly inhibit anterograde FAT when compared with
monomeric proteins. The strongest inhibitory effect was seen with hT24 aggregates, which reached statistical significance compared with hT34 and hT39 aggregates. (B) hT40, hT34,
hT24, hT37, and hT23 aggregates did not significantly impair retrograde FAT when compared with monomers of the same isoform. Interestingly, hT39 aggregates caused a mild
inhibition of retrograde FAT, compared with hT39 monomers, an effect not been observed with any other tau construct tested to date. All differences between groups were compared

using a 2-way ANOVA with a Holm—Sidak post-hoc test (*p < 0.05).

impaired anterograde FAT (Fig. 4A) when compared with the
respective monomers (all at 2 pM). Pairwise comparisons within
tau species showed that hT24 aggregates produced significantly
more inhibition of anterograde FAT when compared to hT34 and
hT39 aggregates. The retrograde FAT data were compared using a 2-
way ANOVA, and overall significance was achieved for tau species
(F1,36) = 23.68, p < 0.0001) but not for tau isoforms (Fs36) = 2.269,
p = 0.068) or the interaction (F536) = 0.582, p = 0.714). hT40, hT34,
hT24, hT37, and hT23 aggregates did not significantly impair
retrograde FAT when compared to the respective monomers, but
hT39 aggregates elicited a mild inhibitory effect on retrograde FAT
(Fig. 4B). However, this effect appeared due to a slightly higher
retrograde rate for hT39 monomer rather than a lower retrograde
rate with hT39 aggregates. Plots of FAT rates over time of squid
axoplasms incubated with monomeric and aggregated forms of
each tau isoform are provided in Fig. S2. Collectively, these studies
indicate that inhibition of anterograde FAT represents a toxic effect
common to all tau aggregates, regardless of isoform composition.

3.4. PAD exposure and oligomers in human tauopathies

Tissue sections from tauopathy cases were stained using mul-
tilabel IF for TNT1 (PAD exposure), TOC1 (tau oligomers), and R1
(pan-tau marker) to confirm whether these modifications coexist in
multiple tauopathies with pathologies spanning all of the tau iso-
forms. Cognitively unimpaired Braak stage I—II cases were used to
establish whether these modifications coexist in the early stages of
tau pathology deposition. Indeed, early pretangle neurons within
the hippocampus were labeled with all antibodies in Braak I-II
cases (Fig. 5A—D). In severe AD cases (i.e., Braak stage V—VI), all
markers continue to colocalize in classic NFTs within the hippo-
campus that characterize AD tau pathology (Fig. 5E—H). In CBD, the
characteristic astrocytic pathology (e.g., astrocytic plaques) showed
extensive colocalization between TNT1, TOC1, and R1 in the frontal
cortex (Fig. 5I—L). Similarly, the characteristic Pick bodies in the
frontal cortex were well labeled by TNT1, TOC1, and R1 in PiD tissue
(Fig. 5M—P). While the amount of overlap was extremely high in all
cases, there were a small number of examples in which immuno-
reactivity for the 2 epitopes could be seen separately. In general, the
remarkable colocalization between TNT1, TOC1, and R1 in all

tauopathies confirms that PAD exposure and tau oligomerization
occur simultaneously in cells displaying tau pathology, irrespective
of isoform composition.

We confirmed the isoform composition of pathology in the
human tauopathy lysate samples using the sarkosyl-insoluble
fractions. The AD, PiD, and CBD samples were solubilized in gua-
nidine and dephosphorylated before running in Western blots
(Fig. 6A). The band patterns in the immunoblots showed that the
AD cases contained a mixture of isoforms, the PiD cases clearly
contained 3R isoforms but also some 4R isoforms, while the vast
majority of pathology in CBD cases was comprised of 4R tau iso-
forms. A recombinant protein standard containing all 6 human tau
isoforms was run simultaneously to confirm that each isoform band
was appropriately identified in the human samples.

Sandwich ELISAs were used to further evaluate whether there
are differences in tau oligomerization and PAD exposure specifically
between AD, CBD, and PiD cases. Total tau levels in the soluble
fractions were similar for AD, CBD, and PiD, as indicated by the Tau5
sandwich ELISA (Fig. 6B; 1-way ANOVA, Fi2 9y = 3.283, p = 0.085). In
contrast, AD soluble tau displayed the highest level of TNT1 fol-
lowed by CBD, with PiD having the lowest levels (Fig. 6C; 1-way
ANOVA with Holm-Sidak post-hoc, F9) = 24.87, p = 0.0002).
Similarly, the soluble fraction from AD contained the greatest level
of TOC1 reactivity, followed by CBD, and then PiD had the lowest
signal (Fig. 6D; 1-way ANOVA with Holm—Sidak post-hoc, F2,9) =
16.57, p = 0.001). As a point of reference, the levels of total tau,
TOC1, and TNT1 for ND control cases are provided as dashed line
(data not shown). Total tau levels in the insoluble fractions, as
detected by Tau5, were the highest in AD, followed by CBD and PiD
contained the least (Fig. 6E; 1-way ANOVA with Holm—Sidak post-
hoc, F,9) = 25.93, p = 0.0002). TNT1 detected significantly more
PAD-exposed tau in AD compared with PiD, and more in CBD when
compared with PiD, but AD and CBD were not different (Fig. 6F; 1-
way ANOVA with Holm—Sidak post-hoc, F»9) = 12.07, p = 0.0028).
TOC1 detected significantly more oligomeric tau in AD compared to
CBD and PiD and more in CBD compared with PiD (Fig. 6G; 1-way
ANOVA with Holm—Sidak post-hoc, Fz9) = 35.32, p < 0.0001).
These data complement our findings from the IF studies using fixed
tissue sections (Fig. 5) and further support the co-occurrence of tau
oligomerization and PAD exposure in AD, CBD, and PiD.
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Fig. 5. PAD exposure and tau oligomer formation occur simultaneously in the pathognomonic pathology of Alzheimer’s disease (AD), corticobasal degeneration (CBD), and Pick’s
disease (PiD). (A—P) Triple-label IF for TNT1 (green), TOC1 (red), and R1 (blue) was used to determine the extent of colocalization between PAD-exposed tau (TNT1 reactivity) and
tau oligomers (TOC1 reactivity), and total tau (R1 reactivity). (A—D) Staining confirmed that PAD exposure and tau oligomerization are present in the same neurons in early
pretangle neurons (arrow) in nondemented Braak stage I-II cases. Despite a high degree of overlap between TNT1 and TOC1, occasional inclusions were TNT1 reactive but lacked
TOC1 reactivity (arrowheads). (E—H) Both PAD-exposed tau and tau oligomers remain highly colocalized in late AD brains (Braak stage V—VI, arrow) with both markers continuing to
label classic neurofibrillary tangles. It is notable that occasional inclusions do not show strong colocalization between TNT1 and TOC1 (arrowheads) suggesting that these events are
not always concurrent. (I-L) PAD exposure and tau oligomerization are present in the astrocytic inclusions characteristic of CBD in the frontal cortex (glial plaque identified with
dashed outline). Again, some discrete glial threads appeared to contain a low level of TNT1 and TOC1 colocalization (arrowheads) indicating that PAD exposure and oligomerization
are not always linked in CBD. (M—P) Pick bodies show robust labeling and colocalization with TNT1 and TOC1 in the frontal cortex of PiD brains (arrows). Occasionally, some
inclusions were not double stained with TNT1 and TOC1 (arrowheads) suggesting that in PiD these modifications are not always codistributed. All scale bars are 50 pm. Abbre-
viation: PAD, phosphatase-activating domain. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

2011a; Ward et al.,, 2013]) and conformational display of PAD (as
measured by TNT1 reactivity [Kanaan et al., 2011, 2012]) in aggre-
gates composed of each human tau isoform. In addition, we tested

4. Discussion

The involvement of different tau isoforms in several unrelated

tauopathies is well established, but mechanisms linking different
isoforms to cell degeneration have not been established. Based on
our prior work, we set out to establish the extent of oligomer for-
mation (as measured by TOC1 immunoreactivity [Patterson et al.,

whether tau aggregates of each isoform are toxic to FAT in the squid
axoplasm assay (Song et al., 2016). Results from biochemical assays
indicated that aggregation increased oligomer formation and PAD
exposure for all tau isoforms. The degree of these conformational
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Fig. 6. Immunochemical analysis of tau isoforms, PAD exposure and oligomerization in the frontal cortex of PiD, CBD, and AD brains. (A) Immunoblots of the dephosphorylated,
sarkosyl-insoluble tau fractions from the AD, PiD, and CBD cases displaying the isoform composition. AD cases show a mixture of isoforms, the PiD cases clearly contain 3R isoforms,
but also some 4R isoforms, while the vast majority of pathology in CBD cases 4R tau isoforms. A recombinant protein (Rec Tau) standard containing all 6 tau isoforms was run to
confirm each isoform band. (B—D) Sandwich ELISAs were used to quantify the level of total tau (B, Tau5 capture), PAD-exposed tau (C, TNT1 capture), or tau oligomers (D, TOC1
capture) in soluble protein fractions. (B) As expected, the soluble fraction contained equal levels of tau proteins in all groups. (C, D) The level of PAD-exposed tau (C) and oligomeric
tau (D) was the highest in AD cases, followed CBD cases, and the lowest level among the tauopathies was in PiD. The dashed lined represents the average signal from ND control
cases and is included as a reference point for “normal” levels in all graphs. (E—G) Sandwich ELISAs were also used to quantify the level of total tau (E, Tau5 capture), PAD-exposed tau
(F, TNT1 capture), or tau oligomers (G, TOC1 capture) in the sarkosyl-insoluble fractions. (E) The sarkosyl-insoluble fraction contained significantly more total tau in AD compared to
CBD and PiD, and CBD had more than PiD. (F) Significantly more PAD-exposed tau was found in AD and CBD when compared with PiD. (G) The amount of oligomeric tau proteins in
AD was the highest, and CBD cases contained were significantly higher levels compared with PiD. ELISA values represent the average level of tau (ng/uL) & SEM (n = 4 per group),
and the data were compared using a 1-way ANOVA with Holm—Sidak post-hoc test (*p < 0.05). Abbreviations: AD, Alzheimer’s disease; ANOVA, analysis of variance; CBD, cor-
ticobasal degeneration; ELISA, enzyme-linked immunosorbent assays; PAD, phosphatase-activating domain; PiD, Pick’s disease; SEM, standard error of mean.

changes was greater for 4R isoform aggregates, when compared to
3R isoforms. Most important, aggregates of all 6 isoforms signifi-
cantly impaired anterograde FAT, thus extending prior findings
from experiments using the longest 4R tau isoform (Kanaan et al.,
2011, 2012; LaPointe et al., 2009). Although the longest 3R iso-
form (hT39) was found to impair retrograde FAT slightly, a finding
not seen with any other unmodified tau construct evaluated to date
(Kanaan et al., 2011, 2012; LaPointe et al., 2009; Morfini et al., 2007;
Patterson et al., 2011a), and while this may be due to a slight in-
crease in retrograde rates with monomeric hT39, we recently found
that pseudophosphorylated Ser 422 tau aggregates also impair
retrograde FAT through an unknown mechanism (Tiernan et al.,
2016). Either way, this is intriguing and may merit further charac-
terization. Highlighting the relevance of these observations to

human disease, we showed oligomer formation and PAD exposure
occur in multiple tauopathies (i.e., AD, CBD, and PiD) that involve
various combinations of the tau isoforms.

4.1. PAD exposure and oligomer formation in human tau isoforms

Conformational changes in the tau protein are considered to be
exceptionally important in the formation of pathological inclusions
and toxic effects of tau proteins in human tauopathies. Pathological
conformations thought to facilitate the aggregation of tau were
originally identified when conformation-specific antibodies, such
as Alz50 and MC1, were characterized as having discontinuous
epitopes (Carmel et al., 1996; Hyman et al., 1988; Jicha et al., 1997,
1999). The recent development of tau antibodies that detect PAD



K. Cox et al. / Neurobiology of Aging 47 (2016) 113—126 123

exposure (Combs et al., 2016; Kanaan et al., 2011) or oligomeric
species (Castillo-Carranza et al., 2014b; Lasagna-Reeves et al., 2012;
Patterson et al., 2011a; Ward et al., 2013) has facilitated additional
insight into the pathological conformations adopted by tau. More
recently, we showed that several disease-related modifications of
tau cause conformational display of the PAD in the amino terminus
of tau and oligomeric tau aggregates impaired axonal transport
confirming a link between pathological conformations and tau
toxicity (Kanaan et al., 2011; LaPointe et al., 2009; Patterson et al.,
2011a, b; Tiernan et al., 2016). Moreover, many other studies sug-
gest oligomeric tau is toxic to neurons in culture and in vivo
(Castillo-Carranza et al., 2014a, b; Fa et al., 2016; Gerson et al., 2016;
Lasagna-Reeves et al., 2010; Tian et al., 2013; Usenovic et al., 2015).
Previous studies have focused only on the longest 4R tau isoform to
study the effects of PAD exposure and oligomerization. Here, we
extended those studies to all 6 human tau isoforms in the central
nervous system. Despite some differences in the morphology of
aggregates, PAD exposure and oligomerization occurred with all 6
human tau isoforms when aggregated in vitro.

The measurements of aggregation for each isoform are in gen-
eral agreement with previous studies assessing tau isoform ag-
gregation with ARA-induced polymerization (Combs et al., 2011;
King et al., 2000; Voss and Gamblin, 2009). Visual inspection of
the aggregates using electron microscopy showed that the
morphology of aggregates with different isoforms were quite
distinct. Our data further support this conclusion by showing that
there are differences in the reactivity with conformation-
dependent antibodies (TNT1 and TOC1) among the recombinant
tau isoform aggregates and tauopathy aggregates. Our recombinant
protein data showed greater reactivity with both TNT1 and TOC1
for the 4R isoforms compared to 3R isoforms, and the shortest 4R
isoforms showed the greatest signal among the 4R proteins, while
the opposite was true for 3R isoforms. We confirmed that the dif-
ferences in TNT1 and TOC1 reactivity were dependent on confor-
mation because when the samples are assayed under denaturing
conditions equal reactivity was observed. The varying levels of
reactivity for TNT1 and TOC1 and obvious morphological difference
among tau isoform aggregates suggest that there are likely struc-
tural differences not identified by electron microscopy. Moreover,
there appears to be a relationship between TNT1 and TOC1 reac-
tivity in nondenaturing assays with the tau isoform aggregates,
although it is likely that a single monoclonal antibody may not be
able to equally detect all conformational structures associated with
different tau species, as previously suggested for other oligomeric
antibodies (Kayed et al., 2010; Rasool et al., 2013).

Interestingly, the ultrastructural morphology of tau filaments
in the tauopathies display some distinct features (Crowther, 1990;
Crowther and Goedert, 2000) that suggest structural differences
exist between aggregates composed of different tau isoforms in
human disease. Our data support this conclusion because, while
PAD exposure and oligomer formation were observed in AD (4R
and 3R pathology), CBD (4R pathology), and PiD (3R pathology),
the extent of signal was the lowest in PiD in the biochemical as-
says. Interestingly, the fact that our human PiD cases contained
some 4R isoforms suggests that these potential structural differ-
ences may not be entirely isoform-specific but are also dependent
on still unknown disease-specific factors. The presence of PAD
exposure and oligomerization in all of these tauopathies is further
supported by the extensive colocalization observed between
TNT1 and TOC1 in AD, CBD, and PiD. The diversity of tau inclusions
suggests that different processes may dictate the formation of tau
inclusions in each tauopathy, but unfortunately, these mecha-
nisms remain unidentified. Nonetheless, oligomer formation and
PAD exposure may elicit toxicity to transport in all of these
tauopathies.

It is important to note that the fixation and staining methods
used in the human tissue studies here should leave tau conforma-
tions intact allowing TNT1 and TOC1 to label the pathological
conformations. Previous studies suggest that formaldehyde fixation
does not significantly alter secondary and tertiary conformations in
proteins (Mason and O’Leary, 1991; Rait et al., 2004). We have
recently shown that N-terminal tau antibodies (e.g., Taul3 and
Taul2) with epitopes immediately downstream of TNT1 robustly
label parenchymal tau (i.e., normal tau) as well as tau inclusions
demonstrating that they do not distinguish between normal and
pathological tau conformations in tissue sections (Combs et al.,
2016). In contrast, TNT1 and TOC1 are specific to pathological in-
clusions and do not label parenchymal tau, further suggesting that
conformational differences remain in fixed human tissue samples
(Combs et al., 2016; Kanaan et al., 2011; Patterson et al., 2011a;
Ward et al., 2013).

The hT39 monomers showed a significant increase in TNT1 and
TOCT1 reactivity unlike other 3R isoform monomers. Perhaps, this
signifies inherent structural or folding differences in the longest 3R
isoform compared with other isoforms. It is also noteworthy that a
nonsignificant increase in TNT1 and TOC1 reactivity was also
observed with hT40 monomers, again suggesting the longest 4R
isoform may exhibit a greater tendency for TNT1 and TOC1 epitope
display. There is clear evidence that several tau conformations can
form dynamically, and it seems likely that the protein may normally
shift between folded global conformations and “unfolded” states as
a soluble monomer (Jeganathan et al., 2008; Mukrasch et al., 2009).
Thus, it is not entirely surprising that both TNT1 and TOC1 show
low levels of reactivity with monomers of the longest isoforms
when abundant amounts of the proteins are analyzed.

Most important, we and others have suggested that those tau
post-translational modifications regulate tau folding in situ and
those disease-related modifications like abnormal phosphorylation
and/or aggregation may enhance aberrant PAD exposure and could
prevent tau from returning to a regulatable, monomeric state.
While these potential regulatory events are not well understood,
phosphorylation is important in modulating tau conformations.
Previous studies have shown that pseudophosphorylation at the
ATS site alters tau folding (Jeganathan et al., 2008) and significantly
impairs anterograde FAT as a monomeric protein (Kanaan et al.,
2011), and more recently, we found that pseudophosphorylation
at Ser 422 similarly impairs anterograde transport as a monomer
and is toxic to retrograde transport when aggregated (Tiernan et al.,
2016). Conversely, phosphorylation of tyrosine 18 within PAD ap-
pears to mitigate the deleterious effects of pathological forms of tau
(Kanaan et al., 2012) and might be involved in the normal regula-
tion of PAD-dependent effects on transport (Kanaan et al., 2015).

4.2. A common mechanism of toxicity to all human tau isoform
aggregates

Axonal transport is a cellular process critical for the mainte-
nance of neural connectivity and impairment in transport is
increasingly implicated in the pathogenesis of several neurode-
generative diseases, including tauopathies (Morfini et al., 2009).
Dystrophic neurites, synaptic loss, and protein mislocalization are
pathological features in tauopathies, and evidence of FAT impair-
ments (e.g., axonal swellings, synaptic loss, and impaired vesicle
transport) is present in several tauopathy animal models (Gotz
et al,, 2006; Kanaan et al.,, 2013; Morfini et al., 2009). Recently,
our group described a mechanism by which physiological levels of
hT40 tau with PAD exposed (e.g., aggregates and other disease-
related modifications) caused inhibition of kinesin-dependent
anterograde FAT (Kanaan et al., 2011; LaPointe et al., 2009). Once
hT40 PAD is abnormally exposed, it triggers a PP1/GSK3 signaling
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pathway that leads to kinesin phosphorylation and cargo detach-
ment (Morfini et al., 2002, 2004). Until now, it was unclear whether
other tau isoforms would similarly inhibit anterograde FAT on
aggregation.

To our knowledge, this is the first report showing that aggre-
gates of all 6 tau isoforms produced axonal transport toxicity.
Interestingly, some interisoform differences were noted. Specif-
ically, hT24 aggregates, the shortest 4R isoform, produced the most
robust inhibition of anterograde FAT and showed the highest level
of TNT1 and TOC1 reactivity. Based on the structural differences
described previously, these findings suggest that aggregates
composed of the shortest 4R tau isoform are structurally arranged
to expose PAD more readily than other isoform aggregates, which
would explain the increased toxicity and transport impairment.
Despite such differences, it is important to emphasize that all iso-
form aggregates produced significant inhibition of anterograde
transport. These data indicate that this PAD-dependent toxic
mechanism (Kanaan et al., 2011; LaPointe et al., 2009) is relevant for
multiple tauopathies irrespective of the isoforms composing the
pathological inclusions.

A great deal of focus has been placed on whether monomers,
oligomers, filaments, or various forms of all these tau species are
toxic (Lasagna-Reeves et al., 2011; Sahara et al., 2008, 2014; Ward
et al,, 2012). Indeed, multiple studies implicate oligomers as a pri-
mary toxic species of tau in several tauopathy model systems
(Cardenas-Aguayo Mdel et al., 2014; Castillo-Carranza et al., 2014a;
Fa et al., 2016; Gerson et al., 2016; Lewis and Dickson, 2016; Sahara
etal.,, 2013; Tian et al., 2013; Usenovic et al., 2015; Ward et al., 2012).
Here, the vast majority of aggregates produced by the 3R isoforms
under the experimental conditions used were oligomeric, with only
rare filaments being present in the sample. These samples signifi-
cantly impaired transport suggesting oligomeric species are suffi-
cient for transport inhibition. This is consistent with previous work
showing that Hsp70 binds with tau oligomers (only the hT40 iso-
form was studied) but not with tau filaments. Furthermore, Hsp70
blocked the deleterious effects of hT40 tau aggregates consisting of
both oligomers and filaments on axonal transport suggesting that
tau oligomers are responsible for the inhibitory effect (Patterson
et al., 2011b). However, these studies do not rule out potential
toxicity from modified monomers and/or filaments, which will
require further investigation.

Another interesting difference between specific human tauo-
pathies is the diversity of cell types that are affected and contain tau
inclusions. For example, AD and PiD primarily involve neuronal
inclusions (Braak et al., 2006; Delacourte et al., 1996), while other
tauopathies such as PSP and CBD involve several forms of glial in-
clusions (Berry et al., 2004; Buee Scherrer et al., 1996; Dickson,
1999), and yet, others such as CTE are characterized by a mixture
of neuronal and glial inclusions (McKee et al., 2014). Here, we
provide evidence for a common tau-mediated toxic mechanism for
all 6 isoforms involving impairment of microtubule-based antero-
grade transport (plus-end directed, kinesin-based). The role of
axonal transport in maintaining neuron connectivity and survival is
well established (Kevenaar and Hoogenraad, 2015; Maday et al.,
2014), and the importance of microtubule-based transport ex-
tends to both the somatodendritic compartment and glial cells
(Baas et al., 2016; Kreft et al., 2009). Indeed, microtubule-based
transport is widely involved in intracellular trafficking for several
cellular components including trafficking of myelin components in
oligodendrocytes (Carson et al., 1997; Lyons et al., 2009). Moreover,
tau-induced astrocyte toxicity was associated with impaired
kinesin-dependent transport (Yoshiyama et al., 2003). Thus, the
findings here may have implications for potential mechanisms of
toxicity within both neurons and glial cells in tauopathies of un-
related etiology.

5. Conclusions

The diversity in human tauopathy diseases is poorly understood,
but one central difference is the isoform composition of the
pathognomonic inclusions. Until now, the identity of common
features that would explain how each isoform contributes to dis-
ease pathogenesis remained unknown. However, our data suggest a
model where aggregation-dependent PAD exposure and transport
inhibition represent a common toxic mechanism relevant to all
human tau isoforms. Under this model, cell type-specific differ-
ences in tau isoform expression and aggregation may explain at
least in part the differential vulnerability of cells observed in
different tauopathies. These findings provide a novel mechanistic
basis linking the aggregation process in all tau isoforms to a specific
conformational change (i.e., PAD exposure) and a common toxic
effect on transport and other cell processes affected by PP1/GSK3
signaling. This provides a basis for the development of novel ther-
apeutic strategies for all tauopathies based on blocking or reducing
PAD exposure.
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