187 research outputs found

    Exercise-Induced Improvements in Insulin Sensitivity Are Not Attenuated by a Family History of Type 2 Diabetes

    Get PDF
    © Copyright © 2020 Amador, Meza, McAinch, King, Covington and Bajpeyi. Introduction: A family history of type 2 diabetes (FH+) is a major risk factor for the development of insulin resistance and type 2 diabetes. However, it remains unknown whether exercise-induced improvements in insulin sensitivity and metabolic flexibility are impacted by a FH+. Therefore, we investigated whether improvements in insulin sensitivity, metabolic flexibility, body composition, aerobic fitness and muscle strength are limited by a FH+ following eight weeks of combined exercise training compared to individuals without a family history of type 2 diabetes (FH–). Methods: Twenty (n = 10 FH–, n = 10 FH+) young, healthy, sedentary, normoglycemic, Mexican-American males (age: FH– 22.50 ± 0.81, FH+ 23.41 ± 0.86 years; BMI: FH– 27.91 ± 1.55, FH+ 26.64 ± 1.02 kg/m2) underwent eight weeks of combined aerobic and resistance exercise training three times/week (35 min aerobic followed by six full-body resistance exercises). Insulin sensitivity was assessed via hyperinsulinemic euglycemic clamps. Metabolic flexibility was assessed by the change in respiratory quotient from fasted to insulin-stimulated states. Body composition was determined using dual-energy x-ray absorptiometry. Aerobic fitness was determined by a graded exercise test, and upper- and lower-body strength were assessed via one-repetition maximum bench press and leg strength dynamometer, respectively. Results: Insulin sensitivity, metabolic flexibility, aerobic fitness and strength were not different between groups (p \u3e 0.05). Eight weeks of combined aerobic and resistance exercise training improved insulin sensitivity (FH– p = 0.02, FH+ p = 0.002), increased fat free mass (FH– p = 0.006, FH+ p = 0.001), aerobic fitness (FH– p = 0.03, FH+ p = 0.002), and upper- (FH– p = 0.0001, FH+ p = 0.0001) and lower-body strength (FH– p = 0.0009, FH+ p = 0.0003), but did not change metabolic flexibility (p \u3e 0.05) in both groups. Exercise-induced improvements in metabolic outcomes were similar between groups. Conclusions: Insulin sensitivity, metabolic flexibility, aerobic fitness and strength were not compromised by a FH+. Additionally, a FH+ is not a limiting factor for exercise-induced improvements in insulin sensitivity, aerobic fitness, body composition, and strength in normoglycemic young Mexican-American men

    What motivates senior clinicians to teach medical students?

    Get PDF
    BACKGROUND: This study was designed to assess the motivations of senior medical clinicians to teach medical students. This understanding could improve the recruitment and retention of important clinical teachers. METHODS: The study group was 101 senior medical clinicians registered on a teaching list for a medical school teaching hospital (The Canberra Hospital, ACT, Australia). Their motivations to teach medical students were assessed applying Q methodology. RESULTS: Of the 75 participants, 18 (24%) were female and 57 (76%) were male. The age distribution was as follows: 30–40 years = 16 participants (21.3%), 41–55 years = 46 participants (61.3%) and >55 years = 13 participants (17.3%). Most participants (n = 48, 64%) were staff specialists and 27 (36%) were visiting medical officers. Half of the participants were internists (n = 39, 52%), 12 (16%) were surgeons, and 24 (32%) were other sub-specialists. Of the 26 senior clinicians that did not participate, two were women; 15 were visiting medical officers and 11 were staff specialists; 16 were internists, 9 were surgeons and there was one other sub-specialist. The majority of these non-participating clinicians fell in the 41–55 year age group. The participating clinicians were moderately homogenous in their responses. Factor analysis produced 4 factors: one summarising positive motivations for teaching and three capturing impediments for teaching. The main factors influencing motivation to teach medical students were intrinsic issues such as altruism, intellectual satisfaction, personal skills and truth seeking. The reasons for not teaching included no strong involvement in course design, a heavy clinical load or feeling it was a waste of time. CONCLUSION: This study provides some insights into factors that may be utilised in the design of teaching programs that meet teacher motivations and ultimately enhance the effectiveness of the medical teaching workforce

    Defence Responses of Arabidopsis thaliana to Infection by Pseudomonas syringae Are Regulated by the Circadian Clock

    Get PDF
    The circadian clock allows plants to anticipate predictable daily changes in abiotic stimuli, such as light; however, whether the clock similarly allows plants to anticipate interactions with other organisms is unknown. Here we show that Arabidopsis thaliana (Arabidopsis) has circadian clock-mediated variation in resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), with plants being least susceptible to infection in the subjective morning. We suggest that the increased resistance to Pst DC3000 observed in the morning in Col-0 plants results from clock-mediated modulation of pathogen associated molecular pattern (PAMP)-triggered immunity. Analysis of publicly available microarray data revealed that a large number of Arabidopsis defence-related genes showed both diurnal- and circadian-regulation, including genes involved in the perception of the PAMP flagellin which exhibit a peak in expression in the morning. Accordingly, we observed that PAMP-triggered callose deposition was significantly higher in wild-type plants inoculated with Pst DC3000 hrpA in the subjective morning than in the evening, while no such temporal difference was evident in arrhythmic plants. Our results suggest that PAMP-triggered immune responses are modulated by the circadian clock and that temporal regulation allows plants to anticipate and respond more effectively to pathogen challenges in the daytime

    Constructing non-stationary Dynamic Bayesian Networks with a flexible lag choosing mechanism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dynamic Bayesian Networks (DBNs) are widely used in regulatory network structure inference with gene expression data. Current methods assumed that the underlying stochastic processes that generate the gene expression data are stationary. The assumption is not realistic in certain applications where the intrinsic regulatory networks are subject to changes for adapting to internal or external stimuli.</p> <p>Results</p> <p>In this paper we investigate a novel non-stationary DBNs method with a potential regulator detection technique and a flexible lag choosing mechanism. We apply the approach for the gene regulatory network inference on three non-stationary time series data. For the Macrophages and Arabidopsis data sets with the reference networks, our method shows better network structure prediction accuracy. For the Drosophila data set, our approach converges faster and shows a better prediction accuracy on transition times. In addition, our reconstructed regulatory networks on the Drosophila data not only share a lot of similarities with the predictions of the work of other researchers but also provide many new structural information for further investigation.</p> <p>Conclusions</p> <p>Compared with recent proposed non-stationary DBNs methods, our approach has better structure prediction accuracy By detecting potential regulators, our method reduces the size of the search space, hence may speed up the convergence of MCMC sampling.</p

    Analysis and Practical Guideline of Constraint-Based Boolean Method in Genetic Network Inference

    Get PDF
    Boolean-based method, despite of its simplicity, would be a more attractive approach for inferring a network from high-throughput expression data if its effectiveness has not been limited by high false positive prediction. In this study, we explored factors that could simply be adjusted to improve the accuracy of inferring networks. Our work focused on the analysis of the effects of discretisation methods, biological constraints, and stringency of Boolean function assignment on the performance of Boolean network, including accuracy, precision, specificity and sensitivity, using three sets of microarray time-series data. The study showed that biological constraints have pivotal influence on the network performance over the other factors. It can reduce the variation in network performance resulting from the arbitrary selection of discretisation methods and stringency settings. We also presented the master Boolean network as an approach to establish the unique solution for Boolean analysis. The information acquired from the analysis was summarised and deployed as a general guideline for an efficient use of Boolean-based method in the network inference. In the end, we provided an example of the use of such a guideline in the study of Arabidopsis circadian clock genetic network from which much interesting biological information can be inferred

    Epigenetic management of major psychosis

    Get PDF
    Epigenetic mechanisms are thought to play a major role in the pathogenesis of the major psychoses (schizophrenia and bipolar disorder), and they may be the link between the environment and the genome in the pathogenesis of these disorders. This paper discusses the role of epigenetics in the management of major psychosis: (1) the role of epigenetic drugs in treating these disorders. At present, there are three categories of epigenetic drugs that are being actively investigated for their ability to treat psychosis: drugs inhibiting histone deacetylation; drugs decreasing DNA methylation; and drugs targeting microRNAs; and (2) the role of epigenetic mechanisms in electroconvulsive therapy in these disorders

    Glutamine-to-glutamate ratio in the nucleus accumbens predicts effort-based motivated performance in humans

    Get PDF
    Substantial evidence implicates the nucleus accumbens in motivated performance, but very little is known about the neurochemical underpinnings of individual differences in motivation. Here, we applied 1H magnetic resonance spectroscopy (1H-MRS) at ultra-high-field in the nucleus accumbens and inquired whether levels of glutamate (Glu), glutamine (Gln), GABA or their ratios predict interindividual differences in effort-based motivated task performance. Given the incentive value of social competition, we also examined differences in performance under self-motivated or competition settings. Our results indicate that higher accumbal Gln-to-Glu ratio predicts better overall performance and reduced effort perception. As performance is the outcome of multiple cognitive, motor and physiological processes, we applied computational modeling to estimate best-fitting individual parameters related to specific processes modeled with utility, effort and performance functions. This model-based analysis revealed that accumbal Gln-to-Glu ratio specifically relates to stamina; i.e., the capacity to maintain performance over long periods. It also indicated that competition boosts performance from task onset, particularly for low Gln-to-Glu individuals. In conclusion, our findings provide novel insights implicating accumbal Gln and Glu balance on the prediction of specific computational components of motivated performance. This approach and findings can help developing therapeutic strategies based on targeting metabolism to ameliorate deficits in effort engagement

    Alternative splicing of barley clock genes in response to low temperature:evidence for alternative splicing conservation

    Get PDF
    Alternative splicing (AS) is a regulated mechanism that generates multiple transcripts from individual genes. It is widespread in eukaryotic genomes and provides an effective way to control gene expression. At low temperatures, AS regulates Arabidopsis clock genes through dynamic changes in the levels of productive mRNAs. We examined AS in barley clock genes to assess whether temperature-dependent AS responses also occur in a monocotyledonous crop species. We identify changes in AS of various barley core clock genes including the barley orthologues of Arabidopsis AtLHY and AtPRR7 which showed the most pronounced AS changes in response to low temperature. The AS events modulate the levels of functional and translatable mRNAs, and potentially protein levels, upon transition to cold. There is some conservation of AS events and/or splicing behaviour of clock genes between Arabidopsis and barley. In addition, novel temperature-dependent AS of the core clock gene HvPPD-H1 (a major determinant of photoperiod response and AtPRR7 orthologue) is conserved in monocots. HvPPD-H1 showed a rapid, temperature-sensitive isoform switch which resulted in changes in abundance of AS variants encoding different protein isoforms. This novel layer of low temperature control of clock gene expression, observed in two very different species, will help our understanding of plant adaptation to different environments and ultimately offer a new range of targets for plant improvement

    REVEILLE8 and PSEUDO-REPONSE REGULATOR5 Form a Negative Feedback Loop within the Arabidopsis Circadian Clock

    Get PDF
    Circadian rhythms provide organisms with an adaptive advantage, allowing them to regulate physiological and developmental events so that they occur at the most appropriate time of day. In plants, as in other eukaryotes, multiple transcriptional feedback loops are central to clock function. In one such feedback loop, the Myb-like transcription factors CCA1 and LHY directly repress expression of the pseudoresponse regulator TOC1 by binding to an evening element (EE) in the TOC1 promoter. Another key regulatory circuit involves CCA1 and LHY and the TOC1 homologs PRR5, PRR7, and PRR9. Purification of EE–binding proteins from plant extracts followed by mass spectrometry led to the identification of RVE8, a homolog of CCA1 and LHY. Similar to these well-known clock genes, expression of RVE8 is circadian-regulated with a dawn phase of expression, and RVE8 binds specifically to the EE. However, whereas cca1 and lhy mutants have short period phenotypes and overexpression of either gene causes arrhythmia, rve8 mutants have long-period and RVE8-OX plants have short-period phenotypes. Light input to the clock is normal in rve8, but temperature compensation (a hallmark of circadian rhythms) is perturbed. RVE8 binds to the promoters of both TOC1 and PRR5 in the subjective afternoon, but surprisingly only PRR5 expression is perturbed by overexpression of RVE8. Together, our data indicate that RVE8 promotes expression of a subset of EE–containing clock genes towards the end of the subjective day and forms a negative feedback loop with PRR5. Thus RVE8 and its homologs CCA1 and LHY function close to the circadian oscillator but act via distinct molecular mechanisms

    MicroRNA Expression Is Down-Regulated and Reorganized in Prefrontal Cortex of Depressed Suicide Subjects

    Get PDF
    <div><h3>Background</h3><p>Recent studies suggest that alterations in expression of genes, including those which regulate neural and structural plasticity, may be crucial in the pathogenesis of depression. MicroRNAs (miRNAs) are newly discovered regulators of gene expression that have recently been implicated in a variety of human diseases, including neuropsychiatric diseases.</p> <h3>Methodology/Principal Findings</h3><p>The present study was undertaken to examine whether the miRNA network is altered in the brain of depressed suicide subjects. Expression of miRNAs was measured in prefrontal cortex (Brodmann Area 9) of antidepressant-free depressed suicide (n = 18) and well-matched non-psychiatric control subjects (n = 17) using multiplex RT-PCR plates. We found that overall miRNA expression was significantly and globally down-regulated in prefrontal cortex of depressed suicide subjects. Using individual tests of statistical significance, 21 miRNAs were significantly decreased at p = 0.05 or better. Many of the down-regulated miRNAs were encoded at nearby chromosomal loci, shared motifs within the 5′-seeds, and shared putative mRNA targets, several of which have been implicated in depression. In addition, a set of 29 miRNAs, whose expression was not pairwise correlated in the normal controls, showed a high degree of co-regulation across individuals in the depressed suicide group.</p> <h3>Conclusions/Significance</h3><p>The findings show widespread changes in miRNA expression that are likely to participate in pathogenesis of major depression and/or suicide. Further studies are needed to identify whether the miRNA changes lead to altered expression of prefrontal cortex mRNAs, either directly (by acting as miRNA targets) or indirectly (e.g., by affecting transcription factors).</p> </div
    corecore