294 research outputs found

    Educating law students for rural and regional legal practice: embedding place consciousness in law curricula

    Get PDF
    As with other professions, the declining rates of recruitment and retention of lawyers in rural and regional Australia is of significant concern. Whilst the causes of this vary between communities, common depictions of the rural and regional lawyer’s role indicate that employment as a lawyer in such areas is characterised by unique personal and professional challenges. Nonetheless, employment as a rural and regional lawyer also offers practitioners rewarding opportunities and lifestyle benefits. Research from other disciplines indicates that the challenges inherent in rural and regional professional practice may be alleviated, and benefits more easily harnessed, via place conscious discipline-specific curriculum that sensitises tertiary students to, and prepares them for, the rural and regional career context.Largely oriented towards substantive content to satisfy external accrediting bodies, undergraduate legal education does not typically acknowledge the ‘places’in which graduates will practice as professionals. This article argues however that there is scope to incorporate place within legal education, and documents an innovative curriculum development project which embeds place consciousness to better prepare law students for employment in rural and regional legal practice.Drawing upon methods from other disciplines, the project team designed a curriculum package which aims to sensitise students to the rural and regional legal practice context, and equip them with the skills to overcome challenges and take advantage of the opportunities available in a rural or regional professional career

    Albumin-mediated extracellular zinc speciation drives cellular zinc uptake

    Get PDF
    This work was financially supported by the Leverhulme Trust (RPG-2017-214) and BBSRC (BB/J006467/1 and BB/V014684/1). We thank Prof. Andrew Riches (University of St. Andrews) for provision of materials, and Dr. Elizabeth Bolitho (University of Warwick) for assistance with cell culture experiments.The role of the extracellular medium in influencing metal uptake into cells has not been described quantitatively. In a chemically defined model system containing albumin, zinc influx into endothelial cells correlates with the extracellular free zinc concentration. Allosteric inhibition of zinc-binding to albumin by free fatty acids increased zinc flux.Publisher PDFPeer reviewe

    New Approaches to Clover Breeding

    Get PDF
    White clover (Trifolium repens L.) and red clover (T. pratense) are the major forage legumes of temperate pastures. Breeding efforts have focused on overcoming the constraints to productivity and reliability in this species and thereby optimising their contribution to mixed swards. In recent years there has been an increased emphasis on livestock production and the efficient utilisation of forage material in the rumen. In this paper we report on a shift in the aims of forage legume breeding at IGER, building on a strong agronomic platform but giving greater consideration to the environmental footprint of our varieties and the contribution that they can make to the quality of meat and milk

    Analysis of radially resolved spectra and potential for lasing in Mo wire array Z pinches

    Get PDF
    Measurements of radially resolved L-shell Mo spectra from wire array pinches on Sandia's Z generator are presented and analyzed using a collisional-radiative model. The spectra indicate large radial gradients in density over the {approx}8-mm-diameter plasma column, but only the emission from the {approx}2 mm central region of the pinch appears to be influenced by opacity. Population inversions and significant gain factors for 100-200 {angstrom} transitions in Ne-like Mo are predicted to exist at the diagnosed plasma conditions

    TEXT messages to improve MEDication adherence and Secondary prevention (TEXTMEDS) after acute coronary syndrome: A randomised clinical trial protocol

    Get PDF
    Background: Identifying simple, low-cost and scalable means of supporting lifestyle change and medication adherence for patients following a cardiovascular (CV) event is important. Objective: The TEXTMEDS (TEXT messages to improve MEDication adherence and Secondary prevention) study aims to investigate whether a cardiac education and support programme sent via mobile phone text message improves medication adherence and risk factor levels in patients following an acute coronary syndrome (ACS). Study design: A single-blind, multicentre, randomised clinical trial of 1400 patients after an ACS with 12 months follow-up. The intervention group will receive multiple weekly text messages that provide information, motivation, support to adhere to medications, quit smoking (if relevant) and recommendations for healthy diet and exercise. The primary endpoint is the percentage of patients who are adherent to cardioprotective medications and the key secondary outcomes are mean systolic blood pressure (BP) and low-density lipoprotein cholesterol. Secondary outcomes will also include total cholesterol, mean diastolic BP, the percentage of participants who are adherent to each cardioprotective medication class, the percentage of participants who achieve target levels of CV risk factors, major vascular events, hospital readmissions and all-cause mortality. The study will be augmented by formal economic and process evaluations to assess acceptability, utility and cost-effectiveness. Summary: The study will provide multicentre randomised trial evidence of the effects of a text message-based programme on cardioprotective medication adherence and levels of CV risk factors. Ethics and dissemination: Primary ethics approval was received from Western Sydney Local Health District Human Research Ethics Committee (HREC2012/12/4.1 (3648) AU RED HREC/13/WMEAD/15). Results will be disseminated via peer-reviewed publications and presentations at international conferences. Trial registration number ACTRN12613000793718; Pre-results

    X-ray harmonic comb from relativistic electron spikes

    Get PDF
    X-ray devices are far superior to optical ones for providing nanometre spatial and attosecond temporal resolutions. Such resolution is indispensable in biology, medicine, physics, material sciences, and their applications. A bright ultrafast coherent X-ray source is highly desirable, for example, for the diffractive imaging of individual large molecules, viruses, or cells. Here we demonstrate experimentally a new compact X-ray source involving high-order harmonics produced by a relativistic-irradiance femtosecond laser in a gas target. In our first implementation using a 9 Terawatt laser, coherent soft X-rays are emitted with a comb-like spectrum reaching the 'water window' range. The generation mechanism is robust being based on phenomena inherent in relativistic laser plasmas: self-focusing, nonlinear wave generation accompanied by electron density singularities, and collective radiation by a compact electric charge. The formation of singularities (electron density spikes) is described by the elegant mathematical catastrophe theory, which explains sudden changes in various complex systems, from physics to social sciences. The new X-ray source has advantageous scalings, as the maximum harmonic order is proportional to the cube of the laser amplitude enhanced by relativistic self-focusing in plasma. This allows straightforward extension of the coherent X-ray generation to the keV and tens of keV spectral regions. The implemented X-ray source is remarkably easily accessible: the requirements for the laser can be met in a university-scale laboratory, the gas jet is a replenishable debris-free target, and the harmonics emanate directly from the gas jet without additional devices. Our results open the way to a compact coherent ultrashort brilliant X-ray source with single shot and high-repetition rate capabilities, suitable for numerous applications and diagnostics in many research fields

    Ischemia-modified albumin : crosstalk between fatty acid and cobalt binding

    Get PDF
    This work was supported by the Leverhulme Trust (grant ref. RPG-2017-214), BBSRC (grant ref. BB/J006467/1) and the British Heart Foundation (grant refs. PG/15/9/31270 and FS/15/42/31556).Myocardial ischemia is difficult to diagnose effectively with still few well-defined biochemical markers for identification in advance, or in the absence of myocardial necrosis. “Ischemia-modified albumin” (IMA), a form of albumin displaying reduced cobalt-binding affinity, is significantly elevated in ischemic patients, and the albumin cobalt-binding (ACB) assay can measure its level indirectly. Elucidating the molecular mechanism underlying the identity of IMA and the ACB assay hinges on understanding metal-binding properties of albumin. Albumin binds most metal ions and harbours four primary metal binding sites: site A, site B, the N-terminal site (NTS), and the free thiol at Cys34. Previous efforts to clarify the identity of IMA and the causes for its reduced cobalt-binding capacity were focused on the NTS site, but the degree of N-terminal modification could not be correlated to the presence of ischemia. More recent work suggested that Co2+ ions as used in the ACB assay bind preferentially to site B, then to site A, and finally to the NTS. This insight paved the way for a new consistent molecular basis of the ACB assay: albumin is also the main plasma carrier for free fatty acids (FFAs), and binding of a fatty acid to the high-affinity site FA2 results in conformational changes in albumin which prevent metal binding at site A and partially at site B. Thus, this review advances the hypothesis that high IMA levels in myocardial ischemia and many other conditions originate from high plasma FFA levels hampering the binding of Co2+ to sites A and/or B. This is supported by biophysical studies and the co-association of a range of pathological conditions with positive ACB assays and high plasma FFA levels.Publisher PDFPeer reviewe

    A single sensor controls large variations in zinc quotas in a marine cyanobacterium

    Get PDF
    Marine cyanobacteria are critical players in global nutrient cycles that crucially depend on trace metals in metalloenzymes, including zinc for CO2 fixation and phosphorus acquisition. How strains proliferating in the vast oligotrophic ocean gyres thrive at ultra-low zinc concentrations is currently unknown. Using Synechococcus sp. WH8102 as a model we show that its zinc-sensor protein Zur differs from all other known bacterial Zur proteins in overall structure and the location of its sensory zinc site. Uniquely, Synechococcus Zur activates metallothionein gene expression, which supports cellular zinc quotas spanning two orders of magnitude. Thus, a single zinc sensor facilitates growth across pico- to micromolar zinc concentrations with the bonus of banking this precious resource. The resultant ability to grow well at both ultra-low and excess zinc, together with overall lower zinc requirements, likely contribute to the broad ecological distribution of Synechococcus across the global oceans
    • 

    corecore