1,726 research outputs found

    Sky maps without anisotropies in the cosmic microwave background are a better fit to WMAP's uncalibrated time ordered data than the official sky maps

    Get PDF
    The purpose of this reanalysis of the WMAP uncalibrated time ordered data (TOD) was two fold. The first was to reassess the reliability of the detection of the anisotropies in the official WMAP sky maps of the cosmic microwave background (CMB). The second was to assess the performance of a proposed criterion in avoiding systematic error in detecting a signal of interest. The criterion was implemented by testing the null hypothesis that the uncalibrated TOD was consistent with no anisotropies when WMAP's hourly calibration parameters were allowed to vary. It was shown independently for all 20 WMAP channels that sky maps with no anisotropies were a better fit to the TOD than those from the official analysis. The recently launched Planck satellite should help sort out this perplexing result.Comment: 11 pages with 1 figure and 2 tables. Extensively rewritten to explain the research bette

    Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks

    Full text link
    Learning deeper convolutional neural networks becomes a tendency in recent years. However, many empirical evidences suggest that performance improvement cannot be gained by simply stacking more layers. In this paper, we consider the issue from an information theoretical perspective, and propose a novel method Relay Backpropagation, that encourages the propagation of effective information through the network in training stage. By virtue of the method, we achieved the first place in ILSVRC 2015 Scene Classification Challenge. Extensive experiments on two challenging large scale datasets demonstrate the effectiveness of our method is not restricted to a specific dataset or network architecture. Our models will be available to the research community later.Comment: Technical report for our submissions to the ILSVRC 2015 Scene Classification Challenge, where we won the first plac

    Quantum superadditivity in linear optics networks: sending bits via multiple access Gaussian channels

    Full text link
    We study classical capacity regions of quantum Gaussian multiple access channels (MAC). In classical variants of such channels, whilst some capacity superadditivity-type effects such as the so called {\it water filling effect} may be achieved, a fundamental classical additivity law can still be identified, {\it viz.} adding resources to one sender is never advantageous to other senders in sending their respective information to the receiver. Here, we show that quantum resources allows violation of this law, by providing two illustrative schemes of experimentally feasible Gaussian MACs.Comment: 4 pages, 2 figure

    Quantitative information flow, with a view

    Get PDF
    We put forward a general model intended for assessment of system security against passive eavesdroppers, both quantitatively ( how much information is leaked) and qualitatively ( what properties are leaked). To this purpose, we extend information hiding systems ( ihs ), a model where the secret-observable relation is represented as a noisy channel, with views : basically, partitions of the state-space. Given a view W and n independent observations of the system, one is interested in the probability that a Bayesian adversary wrongly predicts the class of W the underlying secret belongs to. We offer results that allow one to easily characterise the behaviour of this error probability as a function of the number of observations, in terms of the channel matrices defining the ihs and the view W . In particular, we provide expressions for the limit value as n → ∞, show by tight bounds that convergence is exponential, and also characterise the rate of convergence to predefined error thresholds. We then show a few instances of statistical attacks that can be assessed by a direct application of our model: attacks against modular exponentiation that exploit timing leaks, against anonymity in mix-nets and against privacy in sparse datasets

    A matter of words: NLP for quality evaluation of Wikipedia medical articles

    Get PDF
    Automatic quality evaluation of Web information is a task with many fields of applications and of great relevance, especially in critical domains like the medical one. We move from the intuition that the quality of content of medical Web documents is affected by features related with the specific domain. First, the usage of a specific vocabulary (Domain Informativeness); then, the adoption of specific codes (like those used in the infoboxes of Wikipedia articles) and the type of document (e.g., historical and technical ones). In this paper, we propose to leverage specific domain features to improve the results of the evaluation of Wikipedia medical articles. In particular, we evaluate the articles adopting an "actionable" model, whose features are related to the content of the articles, so that the model can also directly suggest strategies for improving a given article quality. We rely on Natural Language Processing (NLP) and dictionaries-based techniques in order to extract the bio-medical concepts in a text. We prove the effectiveness of our approach by classifying the medical articles of the Wikipedia Medicine Portal, which have been previously manually labeled by the Wiki Project team. The results of our experiments confirm that, by considering domain-oriented features, it is possible to obtain sensible improvements with respect to existing solutions, mainly for those articles that other approaches have less correctly classified. Other than being interesting by their own, the results call for further research in the area of domain specific features suitable for Web data quality assessment

    Quantum data processing and error correction

    Get PDF
    This paper investigates properties of noisy quantum information channels. We define a new quantity called {\em coherent information} which measures the amount of quantum information conveyed in the noisy channel. This quantity can never be increased by quantum information processing, and it yields a simple necessary and sufficient condition for the existence of perfect quantum error correction.Comment: LaTeX, 20 page

    Emergence of Zipf's Law in the Evolution of Communication

    Get PDF
    Zipf's law seems to be ubiquitous in human languages and appears to be a universal property of complex communicating systems. Following the early proposal made by Zipf concerning the presence of a tension between the efforts of speaker and hearer in a communication system, we introduce evolution by means of a variational approach to the problem based on Kullback's Minimum Discrimination of Information Principle. Therefore, using a formalism fully embedded in the framework of information theory, we demonstrate that Zipf's law is the only expected outcome of an evolving, communicative system under a rigorous definition of the communicative tension described by Zipf.Comment: 7 pages, 2 figure

    Information-capacity description of spin-chain correlations

    Full text link
    Information capacities achievable in the multi-parallel-use scenarios are employed to characterize the quantum correlations in unmodulated spin chains. By studying the qubit amplitude damping channel, we calculate the quantum capacity QQ, the entanglement assisted capacity CEC_E, and the classical capacity C1C_1 of a spin chain with ferromagnetic Heisenberg interactions.Comment: 12 pages, 3 figures; typos corrected (to appear in PRA
    corecore