585 research outputs found

    Nuclear Structure Calculations with Low-Momentum Potentials in a Model Space Truncation Approach

    Full text link
    We have calculated the ground-state energy of the doubly magic nuclei 4He, 16O and 40Ca within the framework of the Goldstone expansion starting from various modern nucleon-nucleon potentials. The short-range repulsion of these potentials has been renormalized by constructing a low-momentum potential V-low-k. We have studied the connection between the cutoff momemtum Lambda and the size of the harmonic oscillator space employed in the calculations. We have found a fast convergence of the results with a limited number of oscillator quanta.Comment: 6 pages, 8 figures, to be published on Physical Review

    Shell-model study of the N=82 isotonic chain with a realistic effective hamiltonian

    Full text link
    We have performed shell-model calculations for the even- and odd-mass N=82 isotones, focusing attention on low-energy states. The single-particle energies and effective two-body interaction have been both determined within the framework of the time-dependent degenerate linked-diagram perturbation theory, starting from a low-momentum interaction derived from the CD-Bonn nucleon-nucleon potential. In this way, no phenomenological input enters our effective Hamiltonian, whose reliability is evidenced by the good agreement between theory and experiment.Comment: 7 pages, 11 figures, 3 tables, to be published in Physical Review

    Realistic shell-model calculations: current status and open problems

    Full text link
    The main steps involved in realistic shell-model calculations employing two-body low-momentum interactions are briefly reviewed. The practical value of this approach is exemplified by the results of recent calculations and some remaining open questions and directions for future research are discussed.Comment: 12 pages, 2 figures, contribution to J. Phys G, Special Issue, Focus Section: Open Problems in Nuclear Structur

    High-order Discontinuous Galerkin Solutions of Internal Low-mach Number Turbulent Flows☆

    Get PDF
    Abstract In this work we apply the high-order Discontinuous Galerkin (DG) finite element method to internal low-Mach number turbulent flows. The method here presented is designed to improve the performance of the solution in the incompressible limit using an implicit scheme for the temporal integration of the compressible Reynolds Averaged Navier Stokes (RANS) equations. The per- formance of the scheme is demonstrated by solving a well-known test-case consisting of an abrupt axisymmetric expansion using various degrees of polynomial approximation. Computations with k–ω model are performed to assess the modelling capabilities, with high-order accurate DG discretizations of the RANS equations, in presence of non-equilibrium flow conditions

    Neutron-proton interaction in rare-earth nuclei: Role of tensor force

    Get PDF
    We investigate the role of the tensor force in the description of doubly odd deformed nuclei within the framework of the particle-rotor model. We study the rare-earth nuclei 174Lu, 180Ta, 182Ta, and 188Re using a finite-range interaction, with and without tensor terms. Attention is focused on the lowest K=0 and K=1 bands, where the effects of the residual neutron-proton interaction are particularly evident. Comparison of the calculated results with experimental data evidences the importance of the tensor-force effects.Comment: 8 pages, 5 figures, to be published on Physical Review

    Study of the ground-state energy of 40Ca with the CD-Bonn nucleon-nucleon potential

    Full text link
    We have calculated the ground-state energy of the doubly-magic nucleus 40Ca within the framework of the Goldstone expansion using the CD-Bonn nucleon-nucleon potential. The short-range repulsion of this potential has been renormalized by integrating out its high-momentum components so as to derive a low-momentum potential V-low-k defined up to a cutoff momentum Lambda. A simple criterion has been employed to establish a connection between this cutoff momentum and the size of the two-nucleon model space in the harmonic oscillator basis. This model-space truncation approach provides a reliable way to renormalize the free nucleon-nucleon potential preserving its many-body physics. The role of the 3p-3h and 4p-4h excitations in the description of the ground state of 40Ca is discussed.Comment: 4 pages, 1 figure, 1 table, to be published in Physical Review

    Bonn Potential and Shell-Model Calculations for 206,205,204Pb

    Get PDF
    The structure of the nuclei 206,205,204Pb is studied interms of shell model employing a realistic effective interaction derived from the Bonn A nucleon-nucleon potential. The energy spectra, binding energies and electromagnetic properties are calculated and compared with experiment. A very good overall agreement is obtained. This evidences the reliability of our realistic effective interaction and encourages use of modern realistic potentials in shell-model calculations for heavy-mass nuclei.Comment: 4 pages, 4 figures, submitted to Physical Review

    The wide morphological spectrum of deep (Aggressive) angiomyxoma of the vulvo-vaginal region: A clinicopathologic study of 36 cases, including recurrent tumors

    Get PDF
    Background: Deep angiomyxoma (DAM) is currently included in the category of "specific stromal tumors of the lower female genital tract", along with angiomyofibroblastoma, cellular angiofibroma and myofibroblastoma. Given the high rate of local recurrences, it is crucial to recognize DAM from other tumors that possess indolent behaviour. In the present paper, we analyzed the morphological and immunohistochemical features of 42 surgically-resected vulvo-vaginal DAMs (36 primary and 6 recurrent lesions) in order to widen the morphological spectrum of this uncommon tumor. Methods: A series of 36 cases of surgically-resected primary vulvo-vaginal DAMs were retrospectively collected. Locally recurrent tumors were also available for six of these cases. Results: Out of the primary tumors, 25 out of 36 exhibited the classic-type morphology of DAM. In the remaining cases (11/36 cases), the following uncommon features, which sometimes coexist with one another, were observed: (i) alternating myxoid and collagenized/fibrous areas; (ii) hypercellular areas; (iii) neurofibroma-like appearance; (iv) perivascular hyalinization; (v) microcystic/reticular stromal changes; (vi) "microvascular growth pattern"; (vii) perivascular cuffing; (viii) nodular leiomyomatous differentiation; (ix) hypocellular and fibro-sclerotic stroma. Among the six locally recurrent tumors the following features were observed: (i) classic-type morphology; (ii) hypocellular fibro-sclerotic stroma; (iii) extensive perivascular hyalinization, lumen obliteration and formation of confluent nodular sclerotic masses; (iv) hypercellularity. Immunohistochemically, the neoplastic cells of classic-type DAM in both primary and recurrent tumors were diffusely stained with desmin, suggesting a myofibroblastic nature; in contrast, the neoplastic cells showing elongated fibroblastic-like morphology and set in collagenized/fibrosclerotic stroma in both primary and recurrent tumors were negative or only focally stained with desmin, which is consistent with a fibroblastic profile. Conclusion: Although diagnosis of DAM is usually straightforward if typical morphology is encountered, diagnostic problems may arise when a pathologist is dealing with unusual morphological features, especially hypercellularity, extensive collagenous/fibrosclerotic stroma or neurofibroma-like appearance

    Low Momentum Nucleon-Nucleon Interactions and Shell-Model Calculations

    Get PDF
    In the last few years, the low-momentum nucleon-nucleon (NN) interaction V-low-k derived from free-space NN potentials has been successfully used in shell-model calculations. V-low-k is a smooth potential which preserves the deuteron binding energy as well as the half-on-shell T-matrix of the original NN potential up to a momentum cutoff Lambda. In this paper we put to the test a new low-momentum NN potential derived from chiral perturbation theory at next-to-next-to-next-to-leading order with a sharp low-momentum cutoff at 2.1 fm-1. Shell-model calculations for the oxygen isotopes using effective hamiltonians derived from both types of low-momentum potential are performed. We find that the two potentials show the same perturbative behavior and yield very similar results.Comment: 8 pages, 8 figures, to be published in Physical Review

    Low momentum nucleon-nucleon potential and shell model effective interactions

    Get PDF
    A low momentum nucleon-nucleon (NN) potential V-low-k is derived from meson exhange potentials by integrating out the model dependent high momentum modes of V_NN. The smooth and approximately unique V-low-k is used as input for shell model calculations instead of the usual Brueckner G matrix. Such an approach eliminates the nuclear mass dependence of the input interaction one finds in the G matrix approach, allowing the same input interaction to be used in different nuclear regions. Shell model calculations of 18O, 134Te and 135I using the same input V-low-k have been performed. For cut-off momentum Lambda in the vicinity of 2 fm-1, our calculated low-lying spectra for these nuclei are in good agreement with experiments, and are weakly dependent on Lambda.Comment: 5 pages, 5 figure
    • 

    corecore