4,372 research outputs found

    Dark Matter directional detection: comparison of the track direction determination

    Full text link
    Several directional techniques have been proposed for a directional detection of Dark matter, among others anisotropic crystal detectors, nuclear emulsion plates, and low-pressure gaseous TPCs. The key point is to get access to the initial direction of the nucleus recoiling due to the elastic scattering by a WIMP. In this article, we aim at estimating, for each method, how the information of the recoil track initial direction is preserved in different detector materials. We use the SRIM simulation code to emulate the motion of the first recoiling nucleus in each material. We propose the use of a new observable, D, to quantify the preservation of the initial direction of the recoiling nucleus in the detector. We show that in an emulsion mix and an anisotropic crystal, the initial direction is lost very early, while in a typical TPC gas mix, the direction is well preserved.Comment: 9 pages, 5 figure

    Manejo de insectos plagas en la Amazonia : su aplication en camu camu

    Get PDF

    Probe of Lorentz Invariance Violation effects and determination of the distance of PG 1553+113

    Full text link
    The high frequency peaked BL Lac object PG 1553+113 underwent a flaring event in 2012. The High Energy Stereoscopic System (H.E.S.S.) observed this source for two consecutive nights at very high energies (VHE, E>E>100~GeV). The data show an increase of a factor of three of the flux with respect to archival measurements with the same instrument and hints of intra-night variability. The data set has been used to put constraints on possible Lorentz invariance violation (LIV), manifesting itself as an energy dependence of the velocity of light in vacuum, and to set limits on the energy scale at which Quantum Gravity effects causing LIV may arise. With a new method to combine H.E.S.S. and Fermi large area telescope data, the previously poorly known redshift of PG 1555+113 has been determined to be close to the value derived from optical measurements.Comment: 2014 Fermi Symposium proceedings - eConf C14102.

    NcorpiO\mathcal{O}N : A O(N)\mathcal{O}(N) software for N-body integration in collisional and fragmenting systems

    Full text link
    NcorpiO\mathcal{O}N is a NN-body software developed for the time-efficient integration of collisional and fragmenting systems of planetesimals or moonlets orbiting a central mass. It features a fragmentation model, based on crater scaling and ejecta models, able to realistically simulate a violent impact. The user of NcorpiO\mathcal{O}N can choose between four different built-in modules to compute self-gravity and detect collisions. One of these makes use of a mesh-based algorithm to treat mutual interactions in O(N)\mathcal{O}(N) time. Another module, much more efficient than the standard Barnes-Hut tree code, is a O(N)\mathcal{O}(N) tree-based algorithm called FalcON. It relies on fast multipole expansion for gravity computation and we adapted it to collision detection as well. Computation time is reduced by building the tree structure using a three-dimensional Hilbert curve. For the same precision in mutual gravity computation, NcorpiO\mathcal{O}N is found to be up to 25 times faster than the famous software REBOUND. NcorpiO\mathcal{O}N is written entirely in the C language and only needs a C compiler to run. A python add-on, that requires only basic python libraries, produces animations of the simulations from the output files. The name NcorpiO\mathcal{O}N, reminding of a scorpion, comes from the French NN-corps, meaning NN-body, and from the mathematical notation O(N)\mathcal{O}(N), due to the running time of the software being almost linear in the total number NN of moonlets. NcorpiO\mathcal{O}N is designed for the study of accreting or fragmenting disks of planetesimal or moonlets. It detects collisions and computes mutual gravity faster than REBOUND, and unlike other NN-body integrators, it can resolve a collision by fragmentation. The fast multipole expansions are implemented up to order six to allow for a high precision in mutual gravity computation.Comment: 29 pages, 6 figure

    Determination of guidance values for closed landfill gas emissions

    Get PDF
    International audienceIn order to promote active landfill gas collection and treatment or natural attenuation, it is necessary to identify trigger values concerning landfill gas emissions in the preliminary stage of a risk assessment. The determination of these values is the first goal of a work which includes a large regulation review and the study of a generic inhalation exposure scenario for the most common reuse of French Municipal Solid Waste (MSW) landfill surface, namely a recreational area without residential buildings. The health risk levels of this scenario are lower than the usual levels and enable to determine trigger values for methane production rate. These results and the methane oxidation rate in the landfill cover allow for the determination of residual methane surface emission rates. The combination of these parameters with on-site specific measurements enables the promotion of natural attenuation or active landfill gas treatment
    corecore