3 research outputs found

    Cholesterol absorption status and fasting plasma cholesterol are modulated by the microsomal triacylglycerol transfer protein −493 G/T polymorphism and the usual diet in women

    No full text
    An important inter-individual variability in cholesterol absorption has been reported. It could result from polymorphisms in genes coding for proteins involved in the absorption process and in interaction with dietary intakes. To assess whether the extent of cholesterol absorption or synthesis is modified in adult women according to the −493 G/T polymorphism in the microsomal triglyceride transfer protein gene (MTP) and/or the habitual diet. Cholestanol and sitosterol, as well as desmosterol and lathosterol, surrogate markers of cholesterol absorption or synthesis, respectively, were analyzed in the fasting plasma of 69 middle-aged women under a Western-type diet (WD) and after 3 months on a low-saturated fat, low-cholesterol/Mediterranean-type diet (LFLCD). Genotypes for MTP −493G/T polymorphism were determined. Under an usual WD, subjects homozygous for the MTP −493 T allele exhibited higher (P < 0.05) fasting serum concentrations of cholestanol (199.0 ± 30.0 vs. 133 ± 7.4 × 102 mmol/mol cholesterol) and lathosterol (188.7 ± 21.8 vs. 147.6 ± 9.1 × 102 mmol/mol cholesterol), as well as total cholesterol (7.32 ± 0.22 vs. 6.63 ± 0.12 mmol/l) compared to G carrier subjects. After 3 months on a LFLCD, level of absorption markers decreased in TT subjects with no change in synthesis ones, leading to values comparable to those measured in G carriers. The lowering of plasma total and LDL cholesterol due to dietary change was 2.4- and 2.3-fold greater in TT women than in G carriers. The polymorphism −493G/T in MTP modulates the level of cholesterol absorption but not synthesis in women under a WD, an effect abolished under a prudent LFLCD
    corecore