14 research outputs found

    Optimisation et intégration d'anodes bio-inspirées dans une pile à combustible sans platine

    No full text
    The use of new energy vectors as alternatives to the fossil and nuclear fuels is necessary for the transition to renewable energies. These intermittent energy sources can be stored in fuels, such as hydrogen gas which stands out for its energy density and participation in the virtuous water splitting cycle. Controlled H2 oxidation can be done in so-called fuel cells, which oxidize hydrogen at the anode and reduce oxygen at the cathode to form water and heat as the sole products of the reaction. Those mature technologies employ platinum group metals as catalysts at both the anode and cathode. However, as worldwide energy demands keep increasing, these limited resources will not be sufficient for a worldwide adoption of H2 as an energy vector. In this work, materials containing noble metal free, bio inspired catalysts for H2 oxidation are optimized and integrated in functional fuel cells. Their behaviour in technologically-relevant conditions is studied and compared to that of state of the art platinum catalysts. The best performing materials are thoroughly characterized with various techniques including advanced electrochemistry, yielding leads for further optimization as well as insight on the benchmarking of novel catalytic materials.L'utilisation de nouveaux vecteurs énergétiques comme alternative aux combustibles fossiles et nucléaires est nécessaire pour la transition vers les énergies renouvelables. Ces sources d'énergie intermittentes peuvent être stockées dans des carburants, tels que le dihydrogène qui se distingue par sa densité énergétique. L'oxydation contrôlée de H2 peut être effectuée dans des piles à combustible, qui oxydent l'hydrogène à l'anode et réduisent l'oxygène à la cathode pour former de l'eau et de la chaleur comme seuls produits de la réaction. Ces technologies, matures, emploient des métaux du groupe du platine comme catalyseurs à l'anode et à la cathode. Cependant, alors que les demandes énergétiques mondiales ne cessent d'augmenter, ces ressources limitées ne seront pas suffisantes pour une adoption mondiale de l'hydrogène comme vecteur énergétique. Dans ce travail, des matériaux contenant des catalyseurs bio-inspirés, sans métaux nobles pour l'oxydation de H2 sont optimisés et intégrés dans des piles à combustible fonctionnelles. Leur comportement dans des conditions technologiques est étudié et comparé à celui de l'état de l'art des catalyseurs au platine. Les matériaux les plus performants sont caractérisés en détail par diverses techniques, donnant des pistes pour une optimisation future ainsi qu'un aperçu de ce que requièrent les tests de performance de nouveaux matériaux catalytiques

    optimization and integration of bio-inspired anodesin a platinum-free pemfc

    No full text
    L'utilisation de nouveaux vecteurs énergétiques comme alternative aux combustibles fossiles et nucléaires est nécessaire pour la transition vers les énergies renouvelables. Ces sources d'énergie intermittentes peuvent être stockées dans des carburants, tels que le dihydrogène qui se distingue par sa densité énergétique. L'oxydation contrôlée de H2 peut être effectuée dans des piles à combustible, qui oxydent l'hydrogène à l'anode et réduisent l'oxygène à la cathode pour former de l'eau et de la chaleur comme seuls produits de la réaction. Ces technologies, matures, emploient des métaux du groupe du platine comme catalyseurs à l'anode et à la cathode. Cependant, alors que les demandes énergétiques mondiales ne cessent d'augmenter, ces ressources limitées ne seront pas suffisantes pour une adoption mondiale de l'hydrogène comme vecteur énergétique. Dans ce travail, des matériaux contenant des catalyseurs bio-inspirés, sans métaux nobles pour l'oxydation de H2 sont optimisés et intégrés dans des piles à combustible fonctionnelles. Leur comportement dans des conditions technologiques est étudié et comparé à celui de l'état de l'art des catalyseurs au platine. Les matériaux les plus performants sont caractérisés en détail par diverses techniques, donnant des pistes pour une optimisation future ainsi qu'un aperçu de ce que requièrent les tests de performance de nouveaux matériaux catalytiques.The use of new energy vectors as alternatives to the fossil and nuclear fuels is necessary for the transition to renewable energies. These intermittent energy sources can be stored in fuels, such as hydrogen gas which stands out for its energy density and participation in the virtuous water splitting cycle. Controlled H2 oxidation can be done in so-called fuel cells, which oxidize hydrogen at the anode and reduce oxygen at the cathode to form water and heat as the sole products of the reaction. Those mature technologies employ platinum group metals as catalysts at both the anode and cathode. However, as worldwide energy demands keep increasing, these limited resources will not be sufficient for a worldwide adoption of H2 as an energy vector. In this work, materials containing noble metal free, bio inspired catalysts for H2 oxidation are optimized and integrated in functional fuel cells. Their behaviour in technologically-relevant conditions is studied and compared to that of state of the art platinum catalysts. The best performing materials are thoroughly characterized with various techniques including advanced electrochemistry, yielding leads for further optimization as well as insight on the benchmarking of novel catalytic materials

    Molecular engineered nanomaterials for catalytic hydrogen evolution and oxidation

    No full text
    International audienceThe active sites of hydrogenases have inspired the design of molecular catalysts for hydrogen evolution and oxidation. In this feature article, we showcase key elements of bio-inspiration before embarking on a tour of a representative series of molecular hydrogen evolving catalysts (HECs) and describing the toolbox available for benchmarking their performances. We then show how such catalysts can be immobilized on conducting substrates to prepare electrode materials active for hydrogen evolution and oxidation with a special emphasis on cobalt diimine–dioxime complexes and DuBois' nickel diphosphine compounds. We finally discuss the optimization required for implementing molecular-engineered materials into operational devices and illustrate how such molecular approaches can be expanded to other fuel-forming processes such as the electrochemical valorisation of carbon dioxide and the oxygen reduction or water oxidation reactions

    Noble metal free molecular based anode for H2-O2 fuel cell

    No full text
    Selected conferences on abstractInternational audienc

    Noble metal free molecular based anode for H2-O2 fuel cell

    No full text
    Selected conferences on abstractInternational audienc

    How do H2 oxidation molecular catalysts assemble onto carbon nanotube electrodes? A crosstalk between electrochemical and multi-physical characterization techniques

    No full text
    International audienceMolecular catalysts show powerful catalytic efficiency and unsurpassed selectivity in many reactions of interest. As their implementation in electrocatalytic devices requires their immobilization onto a conductive support, controlling the grafting chemistry and its impact on their distribution at the surface of this support within the catalytic layer is key to enhancing and stabilizing the current they produce. This study focuses on molecular bioinspired nickel catalysts for hydrogen oxidation, bound to carbon nanotubes, a conductive support with high specific area. We couple advanced analysis by transmission electron microscopy (TEM), for direct imaging of the catalyst layer on individual nanotubes, and small angle neutron scattering (SANS), for indirect observation of structural features in a relevant aqueous medium. Low-dose TEM imaging shows a homogeneous, mobile coverage of catalysts, likely as a monolayer coating the nanotubes, while SANS unveils a regular nanostructure in the catalyst distribution on the surface with agglomerates that could be imaged by TEM upon aging. Together, electrochemistry, TEM and SANS analyses allowed drawing an unprecedented and intriguing picture with molecular catalysts evenly distributed at the nanoscale in two different populations required for optimal catalytic performance

    Noncovalent Integration of a Bioinspired Ni Catalyst to Graphene Acid for Reversible Electrocatalytic Hydrogen Oxidation.

    Get PDF
    International audienceEfficient heterogeneous catalysis of hydrogen oxidation reaction (HOR) by platinum group metal (PGM)-free catalysts in proton-exchange membrane (PEM) fuel cells represents a significant challenge toward the development of a sustainable hydrogen economy. Here, we show that graphene acid (GA) can be used as an electrode scaffold for the noncovalent immobilization of a bioinspired nickel bis-diphosphine HOR catalyst. The highly functionalized structure of this material and optimization of the electrode-catalyst assembly sets new benchmark electrocatalytic performances for heterogeneous molecular HOR, with current densities above 30 mA cm-2 at 0.4 V versus reversible hydrogen electrode in acidic aqueous conditions and at room temperature. This study also shows the great potential of GA for catalyst loading improvement and porosity management within nanostructured electrodes toward achieving high current densities with a noble-metal free molecular catalyst

    A bidirectional bioinspired [FeFe]-hydrogenase model

    No full text
    International audienceWith the price-competitiveness of solar and wind power, hydrogen technologies may be game changers for a cleaner, defossilized, and sustainable energy future. H2_2 can indeed be produced in electrolyzers from water, stored for long periods, and converted back into power, on demand, in fuel cells. The feasibility of the latter process critically depends on the discovery of cheap and efficient catalysts able to replace platinum group metals at the anode and cathode of fuel cells. Bioinspiration can be key for designing such alternative catalysts. Here we show that a novel class of iron-based catalysts inspired from the active site of [FeFe]-hydrogenase behave as unprecedented bidirectional electrocatalysts for interconverting H2_2 and protons efficiently under near-neutral aqueous conditions. Such bioinspired catalysts have been implemented at the anode of a functional membrane-less H2_2/O2_2 fuel cell device

    Strategy to overcome recombination limited photocurrent generation in CsPbX 3 nanocrystal arrays

    No full text
    International audienceWe discuss the transport properties of CsPbBrxI3x perovskite nanocrystal arrays as a modelensemble system of caesium lead halide-based perovskite nanocrystal arrays. While this material isvery promising for the design of light emitting diodes, laser, and solar cells, very little work hasbeen devoted to the basic understanding of their (photo)conductive properties in an ensemblesystem. By combining DC and time-resolved photocurrent measurements, we demonstrate fastphotodetection with time response below 2 ns. The photocurrent generation in perovskitenanocrystal-based arrays is limited by fast bimolecular recombination of the material, which limitsthe lifetime of the photogenerated electron-hole pairs. We propose to use nanotrench electrodes asa strategy to ensure that the device size fits within the obtained diffusion length of the material inorder to boost the transport efficiency and thus observe an enhancement of the photoresponse by afactor of 1000
    corecore