72 research outputs found

    The F0F1-ATP Synthase Complex Contains Novel Subunits and Is Essential for Procyclic Trypanosoma brucei

    Get PDF
    The mitochondrial F0F1 ATP synthase is an essential multi-subunit protein complex in the vast majority of eukaryotes but little is known about its composition and role in Trypanosoma brucei, an early diverged eukaryotic pathogen. We purified the F0F1 ATP synthase by a combination of affinity purification, immunoprecipitation and blue-native gel electrophoresis and characterized its composition and function. We identified 22 proteins of which five are related to F1 subunits, three to F0 subunits, and 14 which have no obvious homology to proteins outside the kinetoplastids. RNAi silencing of expression of the F1 α subunit or either of the two novel proteins showed that they are each essential for the viability of procyclic (insect stage) cells and are important for the structural integrity of the F0F1-ATP synthase complex. We also observed a dramatic decrease in ATP production by oxidative phosphorylation after silencing expression of each of these proteins while substrate phosphorylation was not severely affected. Our procyclic T. brucei cells were sensitive to the ATP synthase inhibitor oligomycin even in the presence of glucose contrary to earlier reports. Hence, the two novel proteins appear essential for the structural organization of the functional complex and regulation of mitochondrial energy generation in these organisms is more complicated than previously thought

    Structural and molecular basis of cross-seeding barriers in amyloids

    Get PDF
    Neurodegenerative disorders are frequently associated with beta-sheet-rich amyloid deposits. Amyloid-forming proteins can aggregate under different structural conformations known as strains, which can exhibit a prion-like behavior and distinct pathophenotypes. Precise molecular determinants defining strain specificity and cross-strain interactions (cross-seeding) are currently unknown. The HET-s prion protein from the fungus Podospora anserina represents a model system to study the fundamental properties of prion amyloids. Here, we report the amyloid prion structure of HELLF, a distant homolog of the model prion HET-s. We find that these two amyloids, sharing only 17% sequence identity, have nearly identical beta-solenoid folds but lack cross-seeding ability in vivo, indicating that prion specificity can differ in extremely similar amyloid folds. We engineer the HELLF sequence to explore the limits of the sequence-to-fold conservation and to pinpoint determinants of cross-seeding and prion specificity. We find that amyloid fold conservation occurs even at an exceedingly low level of identity to HET-s (5%). Next, we derive a HELLF-based sequence, termed HEC, able to breach the cross-seeding barrier in vivo between HELLF and HET-s, unveiling determinants controlling cross-seeding at residue level. These findings show that virtually identical amyloid backbone structures might not be sufficient for cross-seeding and that critical side-chain positions could determine the seeding specificity of an amyloid fold. Our work redefines the conceptual boundaries of prion strain and sheds light on key molecular features concerning an important class of pathogenic agents

    Screening for Toxic Amyloid in Yeast Exemplifies the Role of Alternative Pathway Responsible for Cytotoxicity

    Get PDF
    The relationship between amyloid and toxic species is a central problem since the discovery of amyloid structures in different diseases. Despite intensive efforts in the field, the deleterious species remains unknown at the molecular level. This may reflect the lack of any structure-toxicity study based on a genetic approach. Here we show that a structure-toxicity study without any biochemical prerequisite can be successfully achieved in yeast. A PCR mutagenesis of the amyloid domain of HET-s leads to the identification of a mutant that might impair cellular viability. Cellular and biochemical analyses demonstrate that this toxic mutant forms GFP-amyloid aggregates that differ from the wild-type aggregates in their shape, size and molecular organization. The chaperone Hsp104 that helps to disassemble protein aggregates is strictly required for the cellular toxicity. Our structure-toxicity study suggests that the smallest aggregates are the most toxic, and opens a new way to analyze the relationship between structure and toxicity of amyloid species

    Fragility of epidermis and its consequence in dermatology

    Get PDF
    The skin is the largest organ of the body, providing a protective barrier against bacteria, chemicals and physical insults while maintaining homeostasis in the internal environment. Such a barrier function the skin ensures protection against excessive water loss. The skin's immune defence consists of several facets, including immediate, non-specific mechanisms (innate immunity) and delayed, stimulus-specific responses (adaptive immunity), which contribute to fending off a wide range of potentially invasive microorganisms. This article is an overview of all known data about 'fragile skin'. Fragile skin is defined as skin with lower resistance to aggressions. Fragile skin can be classified into four categories up to its origin: physiological fragile skin (age, location), pathological fragile skin (acute and chronic), circumstantial fragile skin (due to environmental extrinsic factors or intrinsic factors such as stress) and iatrogenic fragile skin. This article includes the epidemiologic data, pathologic description of fragile skin with pathophysiological bases (mechanical and immunological role of skin barrier) and clinical description of fragile skin in atopic dermatitis, in acne, in rosacea, in psoriasis, in contact dermatitis and other dermatologic pathologies. This article includes also clinical cases and differential diagnosis of fragile skin (reactive skin) in face in adult population. In conclusion, fragile skin is very frequent worldwide and its prevalence varies between 25% and 52% in Caucasian, African and Asian population. © 2014 European Academy of Dermatology and Venereology

    The origins of the trypanosome genome strains Trypanosoma brucei brucei TREU 927, T. b. gambiense DAL 972, T. vivax Y486 and T. congolense IL3000

    Get PDF
    The genomes of several tsetse-transmitted African trypanosomes (Trypanosoma brucei brucei, T. b. gambiense, T. vivax, T. congolense) have been sequenced and are available to search online. The trypanosome strains chosen for the genome sequencing projects were selected because they had been well characterised in the laboratory, but all were isolated several decades ago. The purpose of this short review is to provide some background information on the origins and biological characterisation of these strains as a source of reference for future users of the genome data. With high throughput sequencing of many more trypanosome genomes in prospect, it is important to understand the phylogenetic relationships of the genome strains

    Murine Models for Trypanosoma brucei gambiense Disease Progression—From Silent to Chronic Infections and Early Brain Tropism

    Get PDF
    Trypanosoma brucei gambiense is responsible for more than 90% of reported cases of human African trypanosomosis (HAT). Infection can last for months or even years without major signs or symptoms of infection, but if left untreated, sleeping sickness is always fatal. In the present study, different T. b. gambiense field isolates from the cerebrospinal fluid of patients with HAT were adapted to growth in vitro. These isolates belong to the homogeneous Group 1 of T. b. gambiense, which is known to induce a chronic infection in humans. In spite of this, these isolates induced infections ranging from chronic to silent in mice, with variations in parasitaemia, mouse lifespan, their ability to invade the CNS and to elicit specific immune responses. In addition, during infection, an unexpected early tropism for the brain as well as the spleen and lungs was observed using bioluminescence analysis. The murine models presented in this work provide new insights into our understanding of HAT and allow further studies of parasite tropism during infection, which will be very useful for the treatment and the diagnosis of the disease

    Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis

    Get PDF

    Frequency synthesis from 2 to 30 GHz using a 0.35 µm BiCMOS SiGe technology

    Get PDF
    In this paper, we present a 10/30GHz MMIC Tripler, an X-band VCO and a frequency divider using a 0.35 µm, 60 GHz-fMAX MMIC BiCMOS SiGe technology. The Tripler exhibits a conversion gain of -5 dB and a low additive phase noise of –143dBc/Hz at a frequency offset of 100kHz is anticipated. In order to drive this Tripler, the design of a MMIC X-band VCO and its measured performance (0.8GHz tuning range, -5 dBm output power and –87dBc/Hz phase noise @ 100kHz of carrier) is also reported. This X band VCO can also drive a frequency divider, developed in the same technology. The assembling of these circuits allows the design of a 2 GHz frequency synthesizer. Measurements have shown a phase noise of -99dBc/ Hz at a frequency offset of 100kHz. Therefore, this paper demonstrates the great capabilities of BiCMOS SiGe MMIC technology about frequency synthesis ranging from 2GHz to 30GHz

    Highly linear 20 GHz-Micromixer in SiGe bipolar technology

    Get PDF
    An active mixer operating at 20 GHz based on the Gilbert Micromixer topology was designed and fabricated in SiGe technology. High performances are measured and especially an excellent linearity for moderate current consumption is demonstrated. The circuit shows an Output IP3 of +12 dBm and a conversion gain Gc of +7.7 dB for an optimum LO power of only -2 dBm. The bias current in the entire circuit is only 25 mA for a chip size of 1.8 x 2 mm²

    Optically Active Tripodal Dendritic Polyoxometalates: Synthesis, Characterization and Their Use in Asymmetric Sulfide Oxidation with Hydrogen Peroxide

    No full text
    A series of structurally well-defined enantiopure tripodal allyl dendritic structures bearing three amine groups have been synthesized. The hydrogenation of the allyl groups in the presence of a Pd/C catalyst gave the corresponding enantiopure n-propyl counterparts. Treatment of these n-propyl amino dendrimers with heteropolyacid H3PW12O40 and excess H2O2 gave the enantiopure n-propyl {PO4[WO(O2)2]4}3– salts. Characterization of these dendritic POM hybrids in solution by NMR spectroscopy, elemental analysis, UV/Vis spectrophotometry, circular dichroism (CD), vibrational circular dichroism (VCD) and fluorimetry indicates the presence of POM–ligand interactions and confirms their optical and chiroptical properties. The hybrid compounds selectively oxidized sulfides to the corresponding chiral sulfoxides with up to 13 % enantiomeric excess (ee), highlighting the transfer of chirality from the dendritic wedges to the inorganic cluster. The properties of the POM anion, especially its solubility and regio- and stereoselectivity, are sensitive to the structure of the cation. The catalyst was recovered by precipitation without any discernible loss in activity, selectivity or enantioselectivity over three catalytic cycles at –50 °C. Interestingly, a dendritic effect was noted in the enantioselectivity as the dendritic-POM hybrids are more selective than their non-dendritic counterparts. The ee resulting from chirality transfer to the anionic POM unit is comparable to that obtained in our previous work with monopodal dendritic polyoxometalates (14 %) despite the polyvalency of the highly charged tripodal ligand, which is rationalized by different spectroscopic methods
    corecore