355 research outputs found

    Some discrete multiple orthogonal polynomials

    Get PDF
    27 pages, no figures.-- MSC2000 codes: 33C45, 33C10, 42C05, 41A28.-- Issue title: "Proceedings of the 6th International Symposium on Orthogonal Polynomials, Special Functions and their Applications" (OPSFA-VI, Rome, Italy, 18-22 June 2001).MR#: MR1985676 (2004g:33015)Zbl#: Zbl 1021.33006In this paper, we extend the theory of discrete orthogonal polynomials (on a linear lattice) to polynomials satisfying orthogonality conditions with respect to r positive discrete measures. First we recall the known results of the classical orthogonal polynomials of Charlier, Meixner, Kravchuk and Hahn (T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978; R. Koekoek and R.F. Swarttouw, Reports of the Faculty of Technical Mathematics and Informatics No. 98-17, Delft, 1998; A.F. Nikiforov et al., Classical Orthogonal Polynomials of a Discrete Variable, Springer, Berlin, 1991). These polynomials have a lowering and raising operator, which give rise to a Rodrigues formula, a second order difference equation, and an explicit expression from which the coefficients of the three-term recurrence relation can be obtained. Then we consider r positive discrete measures and define two types of multiple orthogonal polynomials. The continuous case (Jacobi, Laguerre, Hermite, etc.) was studied by Van Assche and Coussement (J. Comput. Appl. Math. 127 (2001) 317–347) and Aptekarev et al. (Multiple orthogonal polynomials for classical weights, manuscript). The families of multiple orthogonal polynomials (of type II) that we will study have a raising operator and hence a Rodrigues formula. This will give us an explicit formula for the polynomials. Finally, there also exists a recurrence relation of order r+1 for these multiple orthogonal polynomials of type II. We compute the coefficients of the recurrence relation explicitly when r=2.This research was supported by INTAS project 00-272, Dirección General de Investigación del Ministerio de Ciencia y Tecnología of Spain under grants BFM-2000-0029 and BFM-2000-0206-C04-01, Dirección General de Investigación de la Comunidad Autónoma de Madrid, and by project G.0184.02 of FWO-Vlaanderen.Publicad

    A note on biorthogonal ensembles

    Get PDF
    We consider ensembles of random matrices, known as biorthogonal ensembles, whose eigenvalue probability density function can be written as a product of two determinants. These systems are closely related to multiple orthogonal functions. It is known that the eigenvalue correlation functions of such ensembles can be written as a determinant of a kernel function. We show that the kernel is itself an average of a single ratio of characteristic polynomials. In the same vein, we prove that the type I multiple polynomials can be expressed as an average of the inverse of a characteristic polynomial. We finally introduce a new biorthogonal matrix ensemble, namely the chiral unitary perturbed by a source term.Comment: 20 page

    On the feasibility of a nuclear exciton laser

    Full text link
    Nuclear excitons known from M\"ossbauer spectroscopy describe coherent excitations of a large number of nuclei -- analogous to Dicke states (or Dicke super-radiance) in quantum optics. In this paper, we study the possibility of constructing a laser based on these coherent excitations. In contrast to the free electron laser (in its usual design), such a device would be based on stimulated emission and thus might offer certain advantages, e.g., regarding energy-momentum accuracy. Unfortunately, inserting realistic parameters, the window of operability is probably not open (yet) to present-day technology -- but our design should be feasible in the UV regime, for example.Comment: 7 pages RevTeX, 4 figure

    Non-intersecting squared Bessel paths: critical time and double scaling limit

    Get PDF
    We consider the double scaling limit for a model of nn non-intersecting squared Bessel processes in the confluent case: all paths start at time t=0t=0 at the same positive value x=ax=a, remain positive, and are conditioned to end at time t=1t=1 at x=0x=0. After appropriate rescaling, the paths fill a region in the txtx--plane as nn\to \infty that intersects the hard edge at x=0x=0 at a critical time t=tt=t^{*}. In a previous paper (arXiv:0712.1333), the scaling limits for the positions of the paths at time ttt\neq t^{*} were shown to be the usual scaling limits from random matrix theory. Here, we describe the limit as nn\to \infty of the correlation kernel at critical time tt^{*} and in the double scaling regime. We derive an integral representation for the limit kernel which bears some connections with the Pearcey kernel. The analysis is based on the study of a 3×33\times 3 matrix valued Riemann-Hilbert problem by the Deift-Zhou steepest descent method. The main ingredient is the construction of a local parametrix at the origin, out of the solutions of a particular third-order linear differential equation, and its matching with a global parametrix.Comment: 53 pages, 15 figure

    Preventie van valincidenten bij thuiswonende ouderen: een kostenbesparende interventie?

    Get PDF
    Nationale en internationale cijfers tonen aan dat 1 op 3 thuiswonende 65-plussers en nagenoeg de helft van de 80-plussers minstens eenmaal per jaar valt. Bij ongeveer 40% van hen resulteert dit in een letsel. Ongeveer 10% van de valpartijen bij ouderen leidt tot ernstige letsels, waaronder heupfracturen (1-2%), andere fracturen (3-5%) en letsels van de weke delen en hoofdtrauma (5%)

    The Trigonometric Rosen-Morse Potential in the Supersymmetric Quantum Mechanics and its Exact Solutions

    Full text link
    The analytic solutions of the one-dimensional Schroedinger equation for the trigonometric Rosen-Morse potential reported in the literature rely upon the Jacobi polynomials with complex indices and complex arguments. We first draw attention to the fact that the complex Jacobi polynomials have non-trivial orthogonality properties which make them uncomfortable for physics applications. Instead we here solve above equation in terms of real orthogonal polynomials. The new solutions are used in the construction of the quantum-mechanic superpotential.Comment: 16 pages 7 figures 1 tabl

    Direct and inverse spectral transform for the relativistic Toda lattice and the connection with Laurent orthogonal polynomials

    Full text link
    We introduce a spectral transform for the finite relativistic Toda lattice (RTL) in generalized form. In the nonrelativistic case, Moser constructed a spectral transform from the spectral theory of symmetric Jacobi matrices. Here we use a non-symmetric generalized eigenvalue problem for a pair of bidiagonal matrices (L,M) to define the spectral transform for the RTL. The inverse spectral transform is described in terms of a terminating T-fraction. The generalized eigenvalues are constants of motion and the auxiliary spectral data have explicit time evolution. Using the connection with the theory of Laurent orthogonal polynomials, we study the long-time behaviour of the RTL. As in the case of the Toda lattice the matrix entries have asymptotic limits. We show that L tends to an upper Hessenberg matrix with the generalized eigenvalues sorted on the diagonal, while M tends to the identity matrix.Comment: 24 pages, 9 figure

    Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights

    Full text link
    We study a model of nn non-intersecting squared Bessel processes in the confluent case: all paths start at time t=0t = 0 at the same positive value x=ax = a, remain positive, and are conditioned to end at time t=Tt = T at x=0x = 0. In the limit nn \to \infty, after appropriate rescaling, the paths fill out a region in the txtx-plane that we describe explicitly. In particular, the paths initially stay away from the hard edge at x=0x = 0, but at a certain critical time tt^* the smallest paths hit the hard edge and from then on are stuck to it. For ttt \neq t^* we obtain the usual scaling limits from random matrix theory, namely the sine, Airy, and Bessel kernels. A key fact is that the positions of the paths at any time tt constitute a multiple orthogonal polynomial ensemble, corresponding to a system of two modified Bessel-type weights. As a consequence, there is a 3×33 \times 3 matrix valued Riemann-Hilbert problem characterizing this model, that we analyze in the large nn limit using the Deift-Zhou steepest descent method. There are some novel ingredients in the Riemann-Hilbert analysis that are of independent interest.Comment: 59 pages, 11 figure
    corecore