355 research outputs found
Some discrete multiple orthogonal polynomials
27 pages, no figures.-- MSC2000 codes: 33C45, 33C10, 42C05, 41A28.-- Issue title: "Proceedings of the 6th International Symposium on Orthogonal Polynomials, Special Functions and their Applications" (OPSFA-VI, Rome, Italy, 18-22 June 2001).MR#: MR1985676 (2004g:33015)Zbl#: Zbl 1021.33006In this paper, we extend the theory of discrete orthogonal polynomials (on a linear lattice) to polynomials satisfying orthogonality conditions with respect to r positive discrete measures. First we recall the known results of the classical orthogonal polynomials of Charlier, Meixner, Kravchuk and Hahn (T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978; R. Koekoek and R.F. Swarttouw, Reports of the Faculty of Technical Mathematics and Informatics No. 98-17, Delft, 1998; A.F. Nikiforov et al., Classical Orthogonal Polynomials of a Discrete Variable, Springer, Berlin, 1991). These polynomials have a lowering and raising operator, which give rise to a Rodrigues formula, a second order difference equation, and an explicit expression from which the coefficients of the three-term recurrence relation can be obtained. Then we consider r positive discrete measures and define two types of multiple orthogonal polynomials. The continuous case (Jacobi, Laguerre, Hermite, etc.) was studied by Van Assche and Coussement (J. Comput. Appl. Math. 127 (2001) 317–347) and Aptekarev et al. (Multiple orthogonal polynomials for classical weights, manuscript). The families of multiple orthogonal polynomials (of type II) that we will study have a raising operator and hence a Rodrigues formula. This will give us an explicit formula for the polynomials. Finally, there also exists a recurrence relation of order r+1 for these multiple orthogonal polynomials of type II. We compute the coefficients of the recurrence relation explicitly when r=2.This research was supported by INTAS project 00-272, Dirección General de Investigación del Ministerio de Ciencia y Tecnología of Spain under grants BFM-2000-0029 and BFM-2000-0206-C04-01, Dirección General de Investigación de la Comunidad Autónoma de Madrid, and by project G.0184.02 of FWO-Vlaanderen.Publicad
A note on biorthogonal ensembles
We consider ensembles of random matrices, known as biorthogonal ensembles,
whose eigenvalue probability density function can be written as a product of
two determinants. These systems are closely related to multiple orthogonal
functions. It is known that the eigenvalue correlation functions of such
ensembles can be written as a determinant of a kernel function. We show that
the kernel is itself an average of a single ratio of characteristic
polynomials. In the same vein, we prove that the type I multiple polynomials
can be expressed as an average of the inverse of a characteristic polynomial.
We finally introduce a new biorthogonal matrix ensemble, namely the chiral
unitary perturbed by a source term.Comment: 20 page
On the feasibility of a nuclear exciton laser
Nuclear excitons known from M\"ossbauer spectroscopy describe coherent
excitations of a large number of nuclei -- analogous to Dicke states (or Dicke
super-radiance) in quantum optics. In this paper, we study the possibility of
constructing a laser based on these coherent excitations. In contrast to the
free electron laser (in its usual design), such a device would be based on
stimulated emission and thus might offer certain advantages, e.g., regarding
energy-momentum accuracy. Unfortunately, inserting realistic parameters, the
window of operability is probably not open (yet) to present-day technology --
but our design should be feasible in the UV regime, for example.Comment: 7 pages RevTeX, 4 figure
Non-intersecting squared Bessel paths: critical time and double scaling limit
We consider the double scaling limit for a model of non-intersecting
squared Bessel processes in the confluent case: all paths start at time
at the same positive value , remain positive, and are conditioned to end
at time at . After appropriate rescaling, the paths fill a region in
the --plane as that intersects the hard edge at at a
critical time . In a previous paper (arXiv:0712.1333), the scaling
limits for the positions of the paths at time were shown to be
the usual scaling limits from random matrix theory. Here, we describe the limit
as of the correlation kernel at critical time and in the
double scaling regime. We derive an integral representation for the limit
kernel which bears some connections with the Pearcey kernel. The analysis is
based on the study of a matrix valued Riemann-Hilbert problem by
the Deift-Zhou steepest descent method. The main ingredient is the construction
of a local parametrix at the origin, out of the solutions of a particular
third-order linear differential equation, and its matching with a global
parametrix.Comment: 53 pages, 15 figure
Preventie van valincidenten bij thuiswonende ouderen: een kostenbesparende interventie?
Nationale en internationale cijfers tonen aan dat 1 op 3 thuiswonende 65-plussers en nagenoeg de helft van de 80-plussers
minstens eenmaal per jaar valt. Bij ongeveer 40% van hen resulteert dit in een letsel. Ongeveer 10% van de valpartijen
bij ouderen leidt tot ernstige letsels, waaronder heupfracturen (1-2%), andere fracturen (3-5%) en letsels van de weke delen
en hoofdtrauma (5%)
The Trigonometric Rosen-Morse Potential in the Supersymmetric Quantum Mechanics and its Exact Solutions
The analytic solutions of the one-dimensional Schroedinger equation for the
trigonometric Rosen-Morse potential reported in the literature rely upon the
Jacobi polynomials with complex indices and complex arguments. We first draw
attention to the fact that the complex Jacobi polynomials have non-trivial
orthogonality properties which make them uncomfortable for physics
applications. Instead we here solve above equation in terms of real orthogonal
polynomials. The new solutions are used in the construction of the
quantum-mechanic superpotential.Comment: 16 pages 7 figures 1 tabl
Direct and inverse spectral transform for the relativistic Toda lattice and the connection with Laurent orthogonal polynomials
We introduce a spectral transform for the finite relativistic Toda lattice
(RTL) in generalized form. In the nonrelativistic case, Moser constructed a
spectral transform from the spectral theory of symmetric Jacobi matrices. Here
we use a non-symmetric generalized eigenvalue problem for a pair of bidiagonal
matrices (L,M) to define the spectral transform for the RTL. The inverse
spectral transform is described in terms of a terminating T-fraction. The
generalized eigenvalues are constants of motion and the auxiliary spectral data
have explicit time evolution. Using the connection with the theory of Laurent
orthogonal polynomials, we study the long-time behaviour of the RTL. As in the
case of the Toda lattice the matrix entries have asymptotic limits. We show
that L tends to an upper Hessenberg matrix with the generalized eigenvalues
sorted on the diagonal, while M tends to the identity matrix.Comment: 24 pages, 9 figure
Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights
We study a model of non-intersecting squared Bessel processes in the
confluent case: all paths start at time at the same positive value , remain positive, and are conditioned to end at time at . In
the limit , after appropriate rescaling, the paths fill out a
region in the -plane that we describe explicitly. In particular, the paths
initially stay away from the hard edge at , but at a certain critical
time the smallest paths hit the hard edge and from then on are stuck to
it. For we obtain the usual scaling limits from random matrix
theory, namely the sine, Airy, and Bessel kernels. A key fact is that the
positions of the paths at any time constitute a multiple orthogonal
polynomial ensemble, corresponding to a system of two modified Bessel-type
weights. As a consequence, there is a matrix valued
Riemann-Hilbert problem characterizing this model, that we analyze in the large
limit using the Deift-Zhou steepest descent method. There are some novel
ingredients in the Riemann-Hilbert analysis that are of independent interest.Comment: 59 pages, 11 figure
- …