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Abstract

In this paper, we extend the theory of discrete orthogonal polynomials (on a linear lattice) to polynomi-
als satisfying orthogonality conditions with respect to r positive discrete measures. First we recall the known
results of the classical orthogonal polynomials of Charlier, Meixner, Kravchuk and Hahn (T.S. Chihara, An In-
troduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978; R. Koekoek and R.F. Swarttouw,
Reports of the Faculty of Technical Mathematics and Informatics No. 98-17, Delft, 1998; A.F. Nikiforov et
al., Classical Orthogonal Polynomials of a Discrete Variable, Springer, Berlin, 1991). These polynomials have
a lowering and raising operator, which give rise to a Rodrigues formula, a second order di�erence equation,
and an explicit expression from which the coe�cients of the three-term recurrence relation can be obtained.
Then we consider r positive discrete measures and de�ne two types of multiple orthogonal polynomials. The
continuous case (Jacobi, Laguerre, Hermite, etc.) was studied by Van Assche and Coussement (J. Comput.
Appl. Math. 127 (2001) 317–347) and Aptekarev et al. (Multiple orthogonal polynomials for classical weights,
manuscript). The families of multiple orthogonal polynomials (of type II) that we will study have a raising
operator and hence a Rodrigues formula. This will give us an explicit formula for the polynomials. Finally,
there also exists a recurrence relation of order r+1 for these multiple orthogonal polynomials of type II. We
compute the coe�cients of the recurrence relation explicitly when r = 2.
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1. Classical discrete orthogonal polynomials

Orthogonal polynomials {pn(x): n=0; 1; 2; : : :} corresponding to a positive measure � on the real
line are such that pn has degree n and satis�es the conditions∫

pn(x)xj d�(x) = 0; j = 0; 1; : : : ; n− 1:
This de�nes the polynomial up to a multiplicative factor. In the case of discrete orthogonal polyno-
mials, we have a discrete measure � (with �nite moments)

� =
N∑
k=0

�k�xk ; �k ¿ 0; xk ∈R and N ∈N ∪ {+∞};

which is a linear combination of Dirac measures on the N + 1 points x0; : : : ; xN . The orthogonality
conditions of a discrete orthogonal polynomial pn on the set {xk = k: k =0; 1; : : : ; N} (linear lattice)
are more conveniently written as

N∑
k=0

pn(k)(−k)j �k = 0; j = 0; 1; : : : ; n− 1;

with (a)j = a(a+ 1) : : : (a+ j − 1) if j¿ 0 and (a)0 = 1 (the Pochhammer symbol).
The classical discrete orthogonal polynomials (on a linear lattice) are those of Charlier, Meixner,

Kravchuk and Hahn [4,6,7]. In this paper, we will always be considering monic polynomials, which is
often di�erent from the normalisation in the literature. In the case of the (monic) discrete orthogonal
polynomials of Charlier we have

xk = k and �k =
ak

k!
; k ∈N; a¿ 0;

which is a Poisson distribution on N={0; 1; 2; : : :}. We denote these monic polynomials by Cn(x; a).
They satisfy the conditions

+∞∑
k=0

Cn(k; a)(−k)j a
k

k!
= 0; j = 0; 1; : : : ; n− 1:

The monic discrete orthogonal polynomials of Meixner Mn(x; �; c) (with �¿ 0 and 0¡c¡ 1) are
those with

xk = k and �k =
(�)k
k!

ck ; k ∈N;
which is a negative binomial distribution (Pascal distribution) on N. They have the orthogonality
conditions

+∞∑
k=0

Mn(k; �; c)(−k)j (�)kk! c
k = 0; j = 0; 1; : : : ; n− 1:

The monic Kravchuk polynomials Kn(x;p;N ) (with 0¡p¡ 1 and N ∈N) are the discrete orthog-
onal polynomials that satisfy the conditions

N∑
k=0

Kn(k;p;N )(−k)j
(
N

k

)
pk(1− p)N−k = 0; j = 0; 1; : : : ; n− 1:
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Here the weights �k form a binomial distribution. Finally, the monic discrete orthogonal polynomials
of Hahn Qn(x; �; �; N ) (with �; �¿− 1 and N ∈N) have the orthogonality conditions

N∑
k=0

Qn(k; �; �; N )(−k)j
(
�+ k

k

)(
� + N − k
N − k

)
= 0; j = 0; 1; : : : ; n− 1:

In this case we have a hypergeometric distribution.
If we de�ne the weight function

w(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ax

�(x + 1)
Charlier;

�(� + x)
�(�)

cx

�(x + 1)
Meixner;

�(N + 1)
�(x + 1)�(N − x + 1) p

x(1− p)N−x Kravchuk;

�(�+ x + 1)
�(x + 1)�(�+ 1)

�(� + N − x + 1)
�(N − x + 1)�(� + 1) Hahn;

then in each of the four examples this function satis�es a �rst order di�erence equation

�(�(x)w(x)) = 	(x)w(x) (1.1)

with � a polynomial of degree 6 2 and 	 a polynomial of degree 1. This equation is known as
Pearson’s equation. Here we de�ne �f(x) = f(x + 1) − f(x) as the forward di�erence of f in
x. The backward di�erence of f in x is de�ned as ∇f(x) = f(x) − f(x − 1). The results are as
follows:

Cn(x; a) Mn(x; �; c) Kn(x;p;N ) Qn(x; �; �; N )

� x x (1− p)x x(� + N − x + 1)
	 a− x (c − 1)x + �c Np− x N (�+ 1)− (�+ � + 2)x
When we take the forward di�erence of the classical discrete orthogonal polynomials, one can

show that these polynomials are again orthogonal polynomials of the same family, but not monic
and with a di�erent set of parameters. As such, the � operator acts as a lowering operator on these
families of polynomials. The explicit expressions are

�Cn(x; a) = nCn−1(x; a);

�Mn(x; �; c) = nMn−1(x; � + 1; c);

�Kn(x;p;N ) = nKn−1(x;p;N − 1);
�Qn(x; �; �; N ) = nQn−1(x; �+ 1; � + 1; N − 1):
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One can easily prove these identities by applying summation by parts

N∑
k=M

u(k)�v(k) = u(N + 1)v(N + 1)− u(M)v(M)−
N∑
k=M

v(k + 1)�u(k) (1.2)

on the orthogonality relations.
For each of the classical discrete orthogonal polynomials we also have raising operators which

can also be found using summation by parts. The results are

∇
(

ax

�(x + 1)
Cn(x; a)

)
=− ax−1

�(x + 1)
Cn+1(x; a);

∇
(
(�)x
x!
cxMn(x; �; c)

)
=
(�)x−1cx−1(c − 1)

x!
Mn+1(x; � − 1; c);

∇
((

N

x

)
px(1− p)N−xKn(x;p;N )

)
=−

(
N + 1

x

)
px(1− p)N+1−x

p(1− p)(N + 1) Kn+1(x;p;N + 1)

and

∇
((

�+ x

x

)(
� + N − x
N − x

)
Qn(x; �; �; N )

)

=− n+ �+ �
��

(
�+ x − 1

x

)(
� + N − x
N − x + 1

)
Qn+1(x; �− 1; � − 1; N + 1):

When we use this raising operator several times, we get a Rodrigues formula for the polynomials.
If we work out this formula, we get an explicit expression for the classical discrete orthogonal
polynomials which we can link to a hypergeometric function. These expressions are

Cn(x; a) = (−a)n2F0
( −n;−x

−

∣∣∣∣∣− 1
a

)
;

Mn(x; �; c) =
cn

(c − 1)n (�)n2F1
( −n;−x

�

∣∣∣∣∣ 1− 1
c

)
;

Kn(x;p;N ) = pn(−N )n2F1
( −n;−x

−N

∣∣∣∣∣ 1p
)
;

Qn(x; �; �; N ) =
(�+ 1)n(−N )n
(n+ �+ � + 1)n

3F2

( −n;−x; n+ �+ � + 1
−N; �+ 1

∣∣∣∣∣ 1
)
:
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Every system of monic orthogonal polynomials pn satis�es a recurrence relation of the form

xpn(x) = pn+1(x) + bnpn(x) + anpn−1(x); n¿ 0;

with an¿ 0 or, when the orthogonality is on R+,
xpn(x) = pn+1(x) + (An + Cn)pn(x) + An−1Cnpn−1(x); n¿ 0;

with An; Cn¿ 0 and initial conditions p0 = 1 and p−1 = 0. From the explicit expression of the poly-
nomials, one can compute these recurrence coe�cients by comparing coe�cients in the recurrence
relation, and for discrete orthogonal polynomials on a linear lattice it is most convenient to use the
basis {(−x)j: j = 0; 1; 2; : : :}. For the classical monic discrete orthogonal polynomials we have the
following results:

Cn(x; a) Mn(x; �; c) Kn(x;p;N ) Qn(x; �; �; N )

an = an an =
cn(�+n−1)
(1−c)2 an = n(1− p)p(N − n+ 1) An =

(�+n+1)(N−n)(n+�+�+1)
(�+�+2n+1)(�+�+2n+2)

bn = a+ n bn =
n+(�+n)c
1−c bn = p(N − n) + n(1− p) Cn =

n(�+n)(N+�+�+n+1)
(�+�+2n)(�+�+2n+1)

Finally, we can prove (by combining the lowering and raising operator) that the classical discrete
orthogonal polynomials satisfy a second order di�erence equation of the form

�(x)∇�y(x) + 	(x)�y(x) + 
ny(x) = 0; (1.3)

with � and 	 the same as in Pearson’s equation and 
n a constant depending on n. For the Charlier
polynomials we have 
n=n, for the Meixner polynomials 
n=n(1−c), for the Kravchuk polynomials

n = n and for the Hahn polynomials 
n = n(n+ �+ � + 1).
Note that the Meixner, Kravchuk and Charlier polynomials are limiting cases of the Hahn poly-

nomials. Indeed we have that

Mn(x; �; c) = lim
N→+∞Qn

(
x; � − 1;

(
1− c
c

)
N; N

)
;

Kn(x;p;N ) = lim
t→+∞Qn(x;pt; (1− p)t; N );

Cn(x; a) = lim
�→+∞

Mn

(
x; �;

a
�

)
:

2. Discrete multiple orthogonal polynomials

2.1. De�nitions

Suppose we have r positive measures �1; : : : ; �r on R. For each of them we de�ne the support as

supp(�j) = {x∈R | ∀�¿ 0; �j((x − �; x + �))¿ 0}:
These are closed subsets of R. We also de�ne

�j = the smallest interval that contains supp(�j):
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Finally, we introduce a multi-index ñ = (n1; n2; : : : ; nr)∈Nr and its length |̃n| = n1 + n2 + · · · + nr .
Multiple orthogonal polynomials can now be de�ned as follows [8, Chapter 4.3], [2,10]:

De�nition 2.1 (Type I). An r-vector of type I multiple orthogonal polynomials (Añ;1; : : : ; Añ; r), cor-
responding to the multi-index ñ∈Nr , is such that each Añ; j is a polynomial of degree 6 nj − 1 and
the following orthogonality conditions hold:∫

xk
r∑
j=1

Añ; j(x) d�j(x) = 0; k = 0; 1; : : : ; |̃n| − 2: (2.1)

Each Añ; j has nj coe�cients, so we have a linear system of |̃n|−1 homogeneous relations and |̃n|
unknowns. This system has a unique solution up to a multiplicative factor if and only if the matrix
of the system has rank |̃n| − 1 (which means that the measures must satisfy some conditions). In
that case we can determine the type I vector uniquely and we call the multi-index ñ a normal index
for type I.

De�nition 2.2 (Type II). A type II multiple orthogonal polynomial Pñ, corresponding to the multi-
index ñ∈Nr , is a polynomial of degree 6 |̃n| which satis�es the orthogonality conditions∫

�1

Pñ(x)xk d�1(x) = 0; k = 0; 1; : : : ; n1 − 1;
...∫

�r

Pñ(x)xk d�r(x) = 0; k = 0; 1; : : : ; nr − 1:

(2.2)

Here we have a linear system of |̃n| homogeneous relations for the |̃n|+1 unknown coe�cients of
Pñ. Again we would like to have that the solution Pñ is unique up to a multiplicative factor and also
that this polynomial has exactly degree |̃n| (then the monic multiple orthogonal polynomial exists
and will be unique). When we have this, we call ñ a normal index for type II. Let

M =

⎛
⎜⎜⎝
M1(n1)

...

Mr(nr)

⎞
⎟⎟⎠ (2.3)

be the matrix of system (2.2), with

Mj(nj) =

⎛
⎜⎜⎜⎜⎝
m( j)0 m( j)1 : : : m( j)|̃n|
...

...
...

m( j)nj−1 m( j)nj : : : m( j)|̃n|+nj−1

⎞
⎟⎟⎟⎟⎠
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an nj × (|̃n| + 1) matrix of moments of the measure �j. Then the index ñ = (n1; : : : ; nr) is normal
for type II if and only if the matrix B, which you get by omitting the last column in M , has rank
|̃n|. We can also observe that, when the index ñ = (n1; : : : ; nr) is normal, the corresponding unique
monic multiple orthogonal polynomial of type II is of the form

Pñ(x) =
1

det B
det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m(1)0 m(1)1 : : : m(1)|̃n|
...

...
...

m(1)n1−1 m(1)n1 : : : m(1)|̃n|+n1−1
...

...
...

m(r)0 m(r)1 : : : m(r)|̃n|
...

...
...

m(r)nr−1 m(r)nr : : : m(r)|̃n|+nr−1

1 x : : : x|̃n|

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

:

In this paper we will only study the type II multiple orthogonal polynomials. We also suppose
that we have r positive discrete measures on R:

�j =
Nj∑
k=0

�j;k�xj; k ; �j;k ¿ 0; xj; k ∈R; Nj ∈N ∪ {+∞}; j = 1; : : : ; r;

with all the xj;k , k=0; : : : ; Nj, di�erent and this for each j. In this case we have that supp(�j) is the
closure of {xj;k}Njk=0 and that �j is the smallest closed interval on R which contains {xj;k}Njk=0. The
corresponding polynomials are then discrete multiple orthogonal polynomials. The discrete measures
in this paper will be supported on N or a subset, which is achieved by taking xj;k=k for j=1; : : : ; r.
The orthogonality conditions are then more conveniently expressed in terms of the polynomials
(−x)i.

De�nition 2.3 (Discrete Type II). A discrete multiple orthogonal polynomial of type II on the linear
lattice, corresponding to the multi-index ñ∈Nr , is a polynomial Pñ of degree 6 |̃n| that satis�es the
orthogonality conditions

N1∑
k=0

Pñ(k)(−k)i �1; k = 0; i = 0; 1; : : : ; n1 − 1;

...

Nr∑
k=0

Pñ(k)(−k)i �r;k = 0; i = 0; 1; : : : ; nr − 1:

(2.4)
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We now introduce a systems of measures for which every multi-index is normal, namely an
AT system [8, p. 140]. Note that we have to tone down this a little bit. When Nj is �nite and
nj − Nj − 1 = ‘ is greater than zero, then every polynomial of the form

Pñ(x) = (x − xj;0) : : : (x − xj;Nj)(x − a1) : : : (x − a‘)R|̃n|−nj(x)
with R|̃n|−nj a polynomial of degree 6 |̃n| − nj, satis�es the conditions in (2.4) corresponding to the
measure �j. Now it is easy to see that for every a1; : : : ; a‘ we can �nd a R|̃n|−nj so that Pñ also
satis�es the other conditions in (2.4). So only in the cases that nj6Nj + 1; j = 1; : : : ; r, we can
have a unique solution.

2.2. AT systems

De�nition 2.4. An AT system of r positive discrete measures is a system where the measures are
of the form

�j =
N∑
k=0

�j;k�xk ; �j;k ¿ 0; xk ∈R; N ∈N ∪ {+∞}; j = 1; : : : ; r;

so that supp(�j) is the closure of {xk}Nk=0 and �j = � for each j = 1; : : : ; r. We also assume that
there exist r continuous functions w1; : : : ; wr on � with wj(xk) = �j;k , k = 1; : : : ; N , j= 1; : : : ; r, such
that the |̃n| functions

w1(x); xw1(x); : : : ; xn1−1w1(x);

w2(x); xw2(x); : : : ; xn2−1w2(x);
...

wr(x); xwr(x); : : : ; xnr−1wr(x)

form a Chebyshev system on � for each multi-index ñ with |̃n|¡N + 1. This means that every
linear combination (except the one with each coe�cient equal to 0)

r∑
j=1

Qnj−1(x)wj(x)

with Qnj−1 a polynomial of degree at most nj − 1, has at most |̃n| − 1 zeros on �.

For such a system of measures the following theorem holds.

Theorem 2.1. Suppose we have an AT system of r positive discrete measures. Then every discrete
multiple orthogonal polynomial Pñ of type II, corresponding to the multi-index ñ with |̃n|¡N +1,
has exactly |̃n| di�erent zeros on �.
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Proof. Suppose Pñ has m¡ |̃n| sign changes on � at the points y1; : : : ; ym. Consider a multi-index
m̃=(m1; : : : ; mr) so that |m̃|=m, mi6 ni for each i=1; : : : ; r and mj ¡nj for some j. Then construct
the function

Q(x) =
r∑
i=1

Qi(x)wi(x);

with Qi a polynomial of degree mi−1 whenever i �= j and Qj a polynomial of degree mj, satisfying
the interpolation conditions

Q(yk) = 0; k = 1; : : : ; m; Q(y0) = 1;

with y0 �∈ {y1; : : : ; ym} a point in �. Here Q is a linear combination of a Chebyshev system of order
m+1 on �, and this interpolation problem has a unique solution. We also know that Q has at most
m zeros on � since Q �≡ 0 (because Q(y0)=1). Hence Q has exactly m di�erent zeros on �, namely
y1; : : : ; ym, and Q changes sign at these points. Now we have that PñQ does not change sign on �
and we also know that PñQ does not vanish at all the points {xk}Nk=0 because of |̃n|¡N + 1. So
we have that

N∑
k=0

Pñ(xk)Q(xk) =
r∑
i=1

N∑
k=0

Pñ(xk)Qi(xk)�i;k �= 0;

which is in contradiction with the orthogonality relations of Pñ (Qi is for each i a polynomial
of degree less than nj). Hence Pñ has at least |̃n| sign changes and so at least |̃n| di�erent zeros
on �. We know that Pñ is a polynomial of degree at most |̃n|, so Pñ has exactly |̃n| di�erent zeros
on �.

Now we have in an AT system that every discrete multiple orthogonal polynomial Pñ of type II,
corresponding to the multi-index ñ, with |̃n|¡N + 1, has exactly degree |̃n|. Let Pñ;1 and Pñ;2 be
two linearly independent discrete multiple orthogonal polynomials, corresponding to the multi-index
ñ. Then we can �nd a linear combination of these polynomials which is of degree ¡ |̃n|, di�erent
from zero. This polynomial also satis�es the linear system (2.4) and so this is in contradiction with
the preceding theorem. Hence in an AT system every multi-index ñ, with |̃n|¡N + 1, is normal.
Note that only the multi-indices with |̃n|6N + 1 can be normal. If |̃n| − N − 1 = ‘¿ 0, then the
polynomial

(x − x0) : : : (x − xN )(x − a1) : : : (x − a‘)

satis�es the conditions of a multiple orthogonal polynomial, corresponding to the multi-index ñ, and
this for all a1; : : : ; a‘. So we do not have a unique solution (and the multi-index is not normal). If
|̃n|=N +1 then Pñ=(x−x0) : : : (x−xN ) is certainly a solution. Then, if the multi-index ñ is normal,
we are dealing with a function that is zero at all the points {xk}Nk=0, so we will drop this case.
Finally, we give two examples of Chebyshev systems which appear in our examples. The �rst

example can be found in [8, p. 138, Example 3].
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Example 2.1. The functions

v(x)cx1; v(x)xc
x
1; : : : ; v(x)x

n1−1cx1;
...

v(x)cxr ; v(x)xc
x
r ; : : : ; v(x)x

nr−1cxr ;

with all the ci ¿ 0, i = 1; : : : ; r, di�erent and v a continuous function which has no zeros on R+,
form a Chebyshev system on R+ for every ñ= (n1; : : : ; nr)∈Nr .

Example 2.2. The functions

v(x)�(x + �1); v(x)x�(x + �1); : : : ; v(x)xn1−1�(x + �1);

...

v(x)�(x + �r); v(x)x�(x + �r); : : : ; v(x)xnr−1�(x + �r);

(2.5)

with �i ¿ 0 and �i−�j �∈ Z whenever i �= j and v a continuous function with no zeros on R+, form
a Chebyshev system on R+ for every ñ= (n1; : : : ; nr)∈Nr . If �i − �j �∈ {0; 1; : : : ; N − 1} whenever
i �= j, then this still gives a Chebyshev system for every ñ = (n1; : : : ; nr) for which ni ¡N + 1,
i = 1; 2; : : : ; r.

We refer to the appendix for a proof. Note that the indices ñ with |̃n|6N are such that ni ¡N+1
for i = 1; : : : ; r.

3. Recurrence relation

Suppose that all the multi-indices are normal for the r measures �1; : : : ; �r . Then there exists an
interesting recurrence relation of order r + 1 for the monic multiple orthogonal polynomials of type
II with nearly diagonal multi-indices [10]. Here the nearly diagonal multi-index, corresponding to n,
is given by

s̃(n) =

⎛
⎝k + 1; k + 1; : : : ; k + 1︸ ︷︷ ︸

s times

; k; k; : : : ; k︸ ︷︷ ︸
r−s times

⎞
⎠ ;

with n = kr + s, 06 s¡ r. If we write Pn(x) = Ps̃(n)(x), then the following recurrence relation
holds:

xPn(x) = Pn+1(x) +
r∑
j=0

an;jPn−j(x); (3.1)

10



with initial conditions P0 = 1 and Pj = 0, j =−1;−2; : : : ;−r. Each zero of the polynomial Pn+1 is
an eigenvalue of the matrix

An+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0;0 1 0 : : : : : : 0

a1;1 a1;0 1 0 : : : : : : 0

a2;2 a2;1 a2;0 1 0 : : : : : : 0

...
...

. . . . . . . . . . . .
...

ar; r ar; r−1 : : : ar;0 1 0 : : : : : : 0

0 ar+1; r
. . . ar+1;0 1 0 : : : 0

... 0
. . . . . . . . . . . . . . .

...

...
...

. . . . . . . . . . . . . . . 0

...
...

. . . . . . . . . . . . 1

0 0 : : : : : : 0 an;r an; r−1 : : : an;1 an;0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

:

By expanding the determinant det(An+1 − xIn+1) along the last column (do this r times), one can
show that (−1)n det(An − xIn) satis�es the same recurrence relation as the Pn. So also the converse
holds: each eigenvalue of An+1 is a zero of Pn+1. Observe that when all the multi-indices ñ with
|̃n|6N are normal, recursion (3.1) still holds for n¡N .
A more general form of this recurrence relation is given by

xPñ(x) = Pñ+ẽ 1(x) + bñ;0Pñ(x) +
r∑
j=1

bñ; jPñ−ṽj(x); (3.2)

where ẽ i is the ith standard unit vector in Rr and ṽj =
∑j−1

k=0 ẽ r−k . In the case r = 2 the recurrence
relation for the polynomials with nearly diagonal multi-indices (3.1) gives the relations (n+1; n)→
(n; n)→ (n; n− 1)→ (n− 1; n− 1) and (n+ 1; n+ 1)→ (n+ 1; n)→ (n; n)→ (n; n− 1). The �rst
relation follows from the general case (n1 + 1; n2) → (n1; n2) → (n1; n2 − 1) → (n1 − 1; n2 − 1) by
setting n1 = n2 = n. To obtain the second one we set n1 = n and n2 = n + 1 and interchange the
measures �1 and �2.

4. Some examples of discrete multiple orthogonal polynomials

4.1. Multiple Charlier polynomials

The discrete multiple orthogonal polynomials of Charlier are associated with the r discrete
measures

�i =
+∞∑
k=0

aki
k!
�k ; ai ¿ 0; i = 1; : : : ; r;

11



where all the ai are di�erent. For each measure the weights form a Poisson distribution on N. So
we have that supp(�1) = · · · = supp(�r) =N and that �1 = · · · = �r = R+. These r measures form
an AT system. This follows from the fact that we can de�ne r functions

wi(x) =
axi

�(x + 1)
; x∈R+; i = 1; : : : ; r;

so that wi(k) = aki =k!, k ∈N, i = 1; : : : ; r, and that
wi(x); xwi(x); : : : ; xn1−1wi(x);

...

wr(x); xwr(x); : : : ; xn2−1wr(x)

is a Chebyshev system on R+ for every multi-index ñ= (n1; : : : ; nr)∈Nr . This easily follows from
Example 2.1. So every multi-index is normal.
The monic discrete multiple orthogonal polynomial of Charlier Cãñ , corresponding to the multi-index

ñ=(n1; : : : ; nr) and the set of parameters ã=(a1; : : : ; ar), is the monic polynomial of degree |̃n| which
satis�es the orthogonality conditions

+∞∑
k=0

Cãñ (k)(−k)j
ak1
k!
= 0; j = 0; : : : ; n1 − 1;

...
+∞∑
k=0

Cãñ (k)(−k)j
akr
k!
= 0; j = 0; : : : ; nr − 1:

The Gamma function, de�ned for x¿ 0 by

�(x) =
∫ +∞

0
tx−1e−t dt

can be continued analytically to C \{0;−1;−2;−3; : : :} by the property �(z+1)= z�(z). The points
0;−1;−2; : : : are simple poles and the Gamma function is never zero [1, Chapter 6]. Using this, we
can extend each function wi to a C∞-function by

wi(x) =

⎧⎨
⎩

axi
�(x + 1)

x∈R \{−1;−2;−3; : : :};

0 x∈{−1;−2;−3; : : :}:
Summation by parts easily shows that

ai
wi(x)

∇(wi(x)Cãñ (x)) =−Cãñ+ẽ i(x); i = 1; : : : ; r: (4.1)

For the proof we check that the left-hand side of the equation satis�es the orthogonality conditions
of the right-hand side (here we use the fact that wi(−1) = 0). Observe that on the left-hand side
the zeros of the denominator are cancelled by the zeros of the numerator. We call w−1

i (x)∇wi(x) a

12



raising operator because the ith component of the multi-index is increased by 1. Repeatedly using
the raising operators gives us the Rodrigues formula for the polynomials Cãñ , namely

Cãñ (x) =

⎡
⎣ r∏
j=1

(−aj)nj
⎤
⎦�(x + 1)

[
r∏
i=1

(
1
axi
∇niaxi

)](
1

�(x + 1)

)
: (4.2)

Here the product of the di�erence operators a−xi ∇niaxi can be taken in any order because these
operators commute. For the backward di�erence operator ∇ we have the property

∇nf(x) =
n∑
k=0

(
n

k

)
(−1)kf(x − k): (4.3)

Combining the Rodrigues formula and (4.3) we can obtain an explicit expression for the polynomials
Cñ; ã. For the case r = 2 we get

Ca1 ; a2n1 ;n2 (x) = (−a1)n1(−a2)n2�(x + 1)
1
ax1

∇n1ax1

(
1
ax2

∇n2 ax2
�(x + 1)

)

= (−a1)n1(−a2)n2�(x + 1) 1ax1
∇n1ax1

(
1
ax2

n2∑
l=0

(
n2

l

)
(−1)l ax−l2

�(x − l+ 1)

)

= (−a1)n1(−a2)n2�(x + 1)
n2∑
l=0

(
n2

l

)
(−1)la−l2

1
ax1

∇n1 ax1
�(x − l+ 1)

= (−a1)n1(−a2)n2�(x + 1)
n2∑
l=0

(
n2

l

)
(−1)la−l2

n1∑
k=0

(
n1

k

)
(−1)k a−k1

�(x − k − l+ 1) :

When we work this out, we �nd

Ca1 ; a2n1 ;n2 (x) = (−a1)n1(−a2)n2
n1∑
k=0

n2∑
l=0

(−n1)ka−k1
k!

(−n2)la−l2
l!

�(x + 1)
�(x − k − l+ 1)

= (−a1)n1(−a2)n2
n1∑
k=0

n2∑
l=0

(−n1)k(−n2)l(−x)k+l (−1=a1)
k

k!
(−1=a2)l
l!

= (−a1)n1(−a2)n2 lim
→+∞F2

(
−x;−n1;−n2; ; ;− 

a1
;− 
a2

)
;

where

F2(�; �; �′; ; ′; x; y) =
+∞∑
m=0

+∞∑
n=0

(�)m+n(�)m(�′)n
()m(′)nm!n!

xmyn
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is the second of Appell’s hypergeometric functions of two variables [5]. Finally, we use the substi-
tution l→ j − k to �nd the expression

Ca1 ; a2n1 ;n2 (x) = (−a1)n1(−a2)n2
n1∑
k=0

k+n2∑
j=k

(−n1)k(−n2)j−k(−x)j (−1=a1)
k

k!
(−1=a2)j−k
(j − k)!

= (−a1)n1(−a2)n2
n1+n2∑
j=0

min( j;n1)∑
k=max(0; j−n2)

(−n1)k(−n2)j−k (−1=a1)
k

k!
(−1=a2)j−k
(j − k)! (−x)j

= (−a1)n1(−a2)n2
n1+n2∑
j=0

j∑
k=0

(−n1)k(−n2)j−k (−1=a1)
k

k!
(−1=a2)j−k
(j − k)! (−x)j:

If we use the basis {(−x)j}+∞j=0 and write

Ca1 ; a2n1 ;n2 (x) =
n1+n2∑
j=0

c( j)n1 ;n2(−x)j;

then the coe�cients c( j)n1 ;n2 can be used to compute the coe�cients in the recurrence relation

xPn1 ;n2(x) = Pn1+1;n2(x) + bn1 ;n2Pn1 ;n2(x) + cn1 ;n2Pn1 ;n2−1(x) + dn1 ;n2Pn1−1;n2−1(x);

where Pn1 ;n2(x) = C
a1 ; a2
n1 ;n2 (x). Indeed, by comparing coe�cients we have

bn1 ;n2 = n1 + n2 − (−1)n1+n2(c(n1+n2−1)n1 ;n2 + c(n1+n2)n1+1;n2 );

cn1 ;n2 = (−1)n1+n2(c(n1+n2−2)n1 ;n2 + c(n1+n2−1)n1+1;n2 + (bn1 ;n2 − n1 − n2 + 1)c(n1+n2−1)n1 ;n2 );

dn1 ;n2 = (−1)n1+n2−1(c(n1+n2−3)n1 ;n2 + c(n1+n2−2)n1+1;n2

+ (bn1 ;n2 − n1 − n2 + 2)c(n1+n2−2)n1 ;n2 + cn1 ;n2c
(n1+n2−2)
n1 ;n2−1 ): (4.4)

From the explicit expression of Ca1 ; a2n1 ;n2 we then get, after some calculations, that

bn1 ;n2 = a1 + n1 + n2;

cn1 ;n2 = n1a1 + n2a2;

dn1 ;n2 = a1n1(a1 − a2): (4.5)

4.2. Multiple Meixner polynomials (�rst kind)

Here we consider r measures �1; : : : ; �r which in each case form a negative binomial distribution.
For the multiple orthogonal polynomials of Meixner I we take the same parameter �¿ 0, but
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di�erent values for the parameter 0¡c¡ 1. So we have that

�i =
+∞∑
k=0

(�)kcki
k!

�k ; 0¡ci ¡ 1; i = 1; : : : ; r;

with all the ci di�erent. Just as in the previous example, the support of these measures is N and we
have �1 = · · ·= �r = R+. If � �∈ N, we de�ne the functions w�i , i = 1; : : : ; r, as

w�i (x) =

⎧⎪⎨
⎪⎩
�(� + x)
�(�)

cxi
�(x + 1)

if x∈R \({−1;−2;−3; : : :} ∪ {−�;−� − 1;−� − 2; : : :});

0 if x∈{−1;−2;−3; : : :}:
Then these are functions in C∞(R \{−�;−�−1;−�−2; : : :}) with simple poles in −�;−�−1;−�−
2; : : : : If �∈N we de�ne

w�i (x) =
(x + 1)�−1
(� − 1)! c

x
i

which are functions in C∞. With this de�nition these functions satisfy w�i (k) = (�)kcki =k!, k ∈N,
i = 1; : : : ; r. Then by Example 2.1 we know that the measures �1; : : : ; �r form an AT system which
gives us that every multi-index ñ= (n1; : : : ; nr) is normal for these measures.
The monic discrete multiple orthogonal polynomials of Meixner I, corresponding to the multi-index

ñ=(n1; : : : ; nr) and the parameters �, c̃=(c1; : : : ; cr), is the unique monic polynomial M
�;̃c
ñ of degree

|̃n| which satis�es the orthogonality conditions
+∞∑
k=0

M�;̃c
ñ (k)(−k)jw�1 (k) = 0; j = 0; : : : ; n1 − 1;

...
+∞∑
k=0

M�;̃c
ñ (k)(−k)jw�r (k) = 0; j = 0; : : : ; nr − 1:

Using summation by parts we can again show that for these polynomials, we have the following
raising operations:

1

w�−1i (x)
∇(w�i (x)M�;̃c

ñ (x)) =
ci − 1
ci(� − 1) M

�−1;̃c
ñ+ẽ i (x); i = 1; : : : ; r: (4.6)

Observe that on the left-hand side of the equation the zeros of the denominator are cancelled by the
zeros of the numerator and the poles of the numerator by the poles of the denominator. A repeated
application of these operators gives the Rodrigues formula, namely

M�;̃c
ñ (x) = (�)|̃n|

[
r∏
k=1

(
ck

ck − 1
)nk] �(�)�(x + 1)

�(� + x)

×
[

r∏
i=1

(
1
cxi
∇ni cxi

)](
�(� + |̃n|+ x)

�(� + |̃n|)�(x + 1)
)
: (4.7)
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To �nd an explicit expression of these polynomials in the case r = 2 we again use property (4.3)
and after some calculations we have

M�;c1 ; c2
n1 ;n2 (x) =

(
c1

c1 − 1
)n1 ( c2

c2 − 1
)n2
(�)n1+n2 F1

(
−x;−n1;−n2; �; 1− 1

c1
; 1− 1

c2

)

=
cn11 c

n2
2 (�)n1+n2

(c1 − 1)n1(c2 − 1)n2
n1+n2∑
j=0

j∑
k=0

(−n1)k(−n2)j−k
(�)j

((c1−1)=c1)k
k!

((c2−1)=c2)j−k
(j − k)! (−x)j:

Here

F1(�; �; �′; ; x; y) =
+∞∑
m=0

+∞∑
n=0

(�)m+n(�)m(�′)n
()m+nm!n!

xmyn

is the �rst of Appell’s hypergeometric functions of two variables [5]. From this explicit expression
we can �nd the coe�cients of the recurrence relation

xPn1 ;n2(x) = Pn1+1;n2(x) + bn1 ;n2Pn1 ;n2(x) + cn1 ;n2Pn1 ;n2−1(x) + dn1 ;n2Pn1−1;n2−1(x);

with Pn1 ;n2(x) =M
�;c1 ; c2
n1 ;n2 (x). We denote

M�;c1 ; c2
n1 ;n2 (x) =

n1+n2∑
j=0

c( j)n1 ;n2(−x)j

and formulas (4.4) then give us

bn1 ;n2 = n1(2a1 + 1) + n2(a1 + a2 + 1) + a1�;

cn1 ;n2 = (n1(a
2
1 + a1) + n2(a

2
2 + a2))(n1 + n2 + � − 1);

dn1 ;n2 = (� + n1 + n2 − 1)(� + n1 + n2 − 2)(a1 + 1)(a1 − a2)a1n1 (4.8)

with a1 = c1=(1− c1) and a2 = c2=(1− c2).

4.3. Multiple Meixner polynomials (second kind)

In the case of multiple orthogonal polynomials of Meixner II we also have r measures �1; : : : ; �2
which form a negative binomial distribution, but here we change only the value of the parameter
�¿ 0. So we have that

�i =
+∞∑
k=0

(�i)kck

k!
�k ; �i ¿ 0; i = 1; : : : ; r;

with 0¡c¡ 1 and all the �i di�erent. The support of these measures is again N. It follows from
Example 2.2 that every multi-index ñ= (n1; : : : ; nr) is normal for the measures �1; : : : ; �r , whenever
�i − �j �∈ Z for all i �= j.
De�ne

w�i(x) =

⎧⎪⎨
⎪⎩
�(�i + x)
�(�)

cx

�(x + 1)
if x∈R \({−1;−2;−3; : : :} ∪ {−�;−� − 1;−� − 2; : : :});

0 if x∈{−1;−2;−3; : : :};
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then the monic discrete multiple orthogonal polynomials of Meixner II, corresponding to the multi-
index ñ and the parameters �̃= (�1; : : : ; �r), �i ¿ 0 (�i − �j �∈ Z for all i �= j) and 0¡c¡ 1, is the

unique monic polynomial M�̃;c
ñ of degree |̃n| that satis�es the orthogonality conditions

+∞∑
k=0

M�̃;c
ñ (k)(−k)jw�1(k) = 0; j = 0; : : : ; n1 − 1;

...
+∞∑
k=0

M�̃;c
ñ (k)(−k)jw�r (k) = 0; j = 0; : : : ; nr − 1:

In the same way as in Section 4.2 we can show that the following raising operations exist for these
polynomials:

1
w�i−1(x)

∇(w�i(x)M�̃;c
ñ (x)) =

c − 1
c(�i − 1) M

�̃−ẽ i ;c
ñ+ẽ i (x); i = 1; : : : ; r: (4.9)

After a repeated application of these raising operators we get the Rodrigues formula, namely

M�̃;c
ñ (x) =

(
c

c − 1
)|̃n| [ r∏

k=1

(�i)ni

]
�(x + 1)
cx

×
[

r∏
i=1

(
�(�i)

�(�i + x)
∇ni �(�i + ni + x)

�(�i + ni)

)](
cx

�(x + 1)

)
: (4.10)

Now we can again use property (4.3) to �nd an explicit expression for these polynomials. After
some calculations in the case r = 2 we �nally get the expression

M�1 ; �2;c
n1 ;n2 (x) =

(
c

c − 1
)n1+n2

(�2)n2(�1)n1F
1:1;2
1:0;1

⎛
⎜⎜⎝
(−x) : (−n1); (−n2; �1 + n1);

c−1
c ;

c−1
c

(�1) : −; (�2);

⎞
⎟⎟⎠

=
(
c
c−1

)n1+n2
(�2)n2(�1)n1

n1+n2∑
j=0

j∑
k=0

(−n1)k(−n2)j−k(�1+n1)j−k
k!(j − k)!(�2)j−k

((c−1)=c)j
(�1)j

(−x)j:

Here

Fp:q;kl:m;n

⎛
⎜⎜⎝
ã : b̃; c̃;

x; y

�̃ : �̃; ̃;

⎞
⎟⎟⎠=

+∞∑
r; s=0

∏p
j=1(aj)r+s

∏q
j=1(bj)r

∏k
j=1(cj)s∏l

j=1(�j)r+s
∏m
j=1(�j)r

∏n
j=1(j)s

xr

r!
ys

s!

with ã=(a1; : : : ; ap), b̃=(b1; : : : ; bq), c̃=(c1; : : : ; ck), �̃=(�1; : : : ; �l), �̃=(�1; : : : ; �m), ̃=(1; : : : ; n).
These are (the generalisations of) the Kamp�e de F�eriet’s series [9] which are a generalisation of the
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four Appell series in two variables. To �nd the coe�cients of the recurrence relation

xPn1 ;n2(x) = Pn1+1;n2(x) + bn1 ;n2Pn1 ;n2(x) + cn1 ;n2Pn1 ;n2−1(x) + dn1 ;n2Pn1−1;n2−1(x)

with Pn1 ;n2(x) =M
�1 ; �2;c
n1 ;n2 (x), we make use of this explicit expression. If we denote

M�1 ; �2;c
n1 ;n2 (x) =

n1+n2∑
j=0

c( j)n1 ;n2(−x)j;

one can �rst compute c(n1+n2−1)n1 ;n2 , c(n1+n2−2)n1 ;n2 and c(n1+n2−3)n1 ;n2 and then use property (4.4) to �nd

bn1 ;n2 = n1(2a+ 1) + n2(a+ 1) + a�1;

cn1 ;n2 = a(a+ 1)(n1n2 + n1(n1 + �1 − 1) + n2(n2 + �2 − 1));
dn1 ;n2 = a

2(a+ 1)n1(n1 + �1 − 1)(n1 + �1 − �2); (4.11)

where a= c=(1− c).

4.4. Multiple Kravchuk polynomials

Consider r di�erent measures �1; : : : ; �r which in each case form a binomial distribution on the
integers 0; 1; : : : ; N . So they are of the form

�i =
N∑
k=0

(
N

k

)
pki (1− pi)N−k�k ; 0¡pi ¡ 1; i = 1; : : : ; r;

where all the 0¡pi ¡ 1 are di�erent. The support of these measures is {0; 1; : : : ; N} and we have
that �1 = · · ·= �r = [0; N ]. De�ne the functions

vNi (x) =

⎧⎪⎨
⎪⎩

N !pxi (1− pi)N−x
�(x + 1)�(N − x + 1) if x∈R \({−1;−2; : : :} ∪ {N + 1; N + 2; : : :});

0 if x∈{−1;−2; : : :} ∪ {N + 1; N + 2; : : :};
where i=1; : : : ; r, which are functions in C∞. Then the following holds: vNi (k)= (

N
k )p

k
i (1−pi)N−k ,

k ∈N, i = 1; : : : ; r. Now from Example 2.1 it follows that �1; : : : ; �r is an AT system, so that every
multi-index ñ= (n1; : : : ; nr) with |̃n|6N is normal for these measures.
The monic discrete multiple orthogonal polynomials of Kravchuk, corresponding to the multi-index

ñ= (n1; : : : ; nr) with |̃n|6N and the parameters N and p̃= (p1; : : : ; pr), is the unique monic poly-
nomial Kp̃;Nñ of degree |̃n| which satis�es the conditions

N∑
k=0

Kp̃;Nñ (k)(−k)jvN1 (k) = 0; j = 0; : : : ; n1 − 1;

...
N∑
k=0

Kp̃;Nñ (k)(−k)jvNr (k) = 0; j = 0; : : : ; nr − 1:
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Using summation by parts we can show that for these polynomials there exist some raising operators,
namely

pi(1− pi)(N + 1)
vN+1i (x)

∇(vNi (x)Kp̃;Nñ (x)) =−Kp̃;N+1ñ+ẽ i (x); i = 1; : : : ; r: (4.12)

One should use the fact that vNi (−1)=vNi (N +1)=0 to show that the left-hand side of the equations
satis�es the orthogonality conditions of Kp̃;N+1ñ+ẽ i . (Also note that on the left-hand side the simple
zeros of the denominator are also zeros of the numerator.) After a repeated application of these
raising operators we get the Rodrigues formula which is of the form

Kp̃;Nñ (x) = (−N )|̃n|
[

r∏
k=1

pnkk

]
�(x + 1)�(N − x + 1)

N !

×
[

r∏
i=1

((
1− pi
pi

)x
∇ni

(
pi

1− pi

)x)](
(N − |̃n|)!

�(x + 1)�(N − |̃n| − x + 1)
)
: (4.13)

In the case of r = 2 we can again use property (4.3) to �nd an explicit expression in the form

Kp1 ;p2;Nn1 ;n2 (x) =
n1+n2∑
j=0

c( j)n1 ;n2(−x)j

for these polynomials. After some calculations we get

Kp1 ;p2;Nn1 ;n2 (x) =pn11 p
n2
2 (−N )n1+n2 F1

(
−x;−n1;−n2;−N ; 1p1 ;

1
p2

)

=pn11 p
n2
2 (−N )n1+n2

n1+n2∑
j=0

j∑
k=0

(−n1)k
k!

(
1
p1

)k (−n2)j−k
(j − k)!

(
1
p2

)j−k (−x)j
(−N )j :

These are the same expressions as in the example of Meixner I with �=−N , c1 =p1=(p1− 1) and
c2 = p2=(p2 − 1), which gives a1 =−p1 and a2 =−p2 (one can see this already in the Rodrigues
formula). The coe�cients of the recurrence relation

xPn1 ;n2(x) = Pn1+1;n2(x) + bn1 ;n2Pn1 ;n2(x) + cn1 ;n2Pn1 ;n2−1(x) + dn1 ;n2Pn1−1;n2−1(x);

with Pn1 ;n2(x) = K
p1 ;p2;N
n1 ;n2 (x), are then

bn1 ;n2 =−n1(2p1 − 1)− n2(p1 + p2 − 1) + p1N;
cn1 ;n2 = (n1(p

2
1 − p1) + n2(p22 − p2))(n1 + n2 − N − 1);

dn1 ;n2 = (n1 + n2 − N − 1)(n1 + n2 − N − 2)(1− p1)(p1 − p2)p1n1: (4.14)
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4.5. Multiple Hahn polynomials

Take r measures �1; : : : ; �r which in each case form a hypergeometric distribution on the integers
0; : : : ; N . We change the value of the parameter �¿− 1 and keep �¿− 1 �xed. We write

�i =
N∑
k=0

(�i + 1)k
k!

(� + 1)N−k
(N − k)! �k ; �i ¿− 1; i = 1; : : : ; r

with all the �i di�erent. The case where we change the parameter � and keep �¿ − 1 �xed is
obtained when we substitute x → N − x. The support of these measures is {0; : : : ; N} and we again
have that �1 = · · ·= �r = [0; N ].
The monic discrete multiple orthogonal polynomial of Hahn, corresponding to the multi-index

ñ=(n1; : : : ; nr) and the parameters �̃=(�1; : : : ; �r), �, and N , is the unique monic polynomial Q
�̃;�;N
ñ

of degree |̃n| which satis�es the conditions

N∑
k=0

Q�̃;�;Nñ (k)(−k)jv�1 ; �;N (k) = 0; j = 0; : : : ; n1 − 1;

...
N∑
k=0

Q�̃;�;Nñ (k)(−k)jv�r ;�;N (k) = 0; j = 0; : : : ; nr − 1

with

v�;�;N (x) =

⎧⎪⎨
⎪⎩

�(�+ x + 1)
�(�+ 1)�(x + 1)

�(� + N − x + 1)
�(� + 1)�(N − x + 1) if x∈R \(X1 ∪ X2);

0 if x∈X1;

where X1 = {−1;−2; : : :} ∪ {N + 1; N + 2; : : :} and X2 = {−� − 1;−� − 2; : : :} ∪ {� + N + 1; � +
N + 2; � + N + 3; : : :}. Here v�;�;N is a C∞(R \X2)-function with simple poles at the points of X2.
We see from Example 2.2 that every multi-index ñ= (n1; : : : ; nr) with |̃n|6N is normal whenever
�i − �j �∈ {0; 1; : : : ; N − 1} for i �= j.
Using summation by parts (and the fact that v�i;�;N (−1) = v�i;�;N (N + 1) = 0) we can �nd the

following raising operations:

1
v�i−1; �−1;N+1(x)

∇(v�i;�;N (x)Q�̃;�;Nñ (x))

=− |̃n|+ �i + �
�i�

Q�̃−ẽ i ;�−1;N+1ñ+ẽ i (x); i = 1; : : : ; r: (4.15)
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Again we apply these operators a few times to the polynomial Q�̃;�;Nñ to �nd a Rodrigues formula
for this polynomial of the form

Q�̃;�;Nñ (x) =
(−1)|̃n|(� + 1)n1+n2∏r

k=1 (n1 + n2 + �k + � + 1)nk

�(x + 1)�(N − x + 1)
�(� + N − x + 1)

×
[

r∏
i=1

(
1

�(�i + x + 1)
∇ni�(�i + ni + x + 1)

)](
�(� + N − x + 1)

�(x + 1)�(N − x + 1)
)
: (4.16)

Now property (4.3) enables us to �nd an explicit expression for the polynomials starting from the
Rodrigues formula. After some calculations in the case r = 2 we get

Q�1 ; �2;�;Nn1 ;n2 (x)

=
(�1 + 1)n1(�2 + 1)n2(−N )n1+n2

(n1 + n2 + �1 + � + 1)n1(n1 + n2 + �2 + � + 1)n2

×F2:1;32:0;2

⎛
⎜⎜⎝
(−x; � + n1 + �1 + 1) : (−n1); (−n2; � + �2 + n1 + n2 + 1; �1 + n1 + 1);

1; 1

(−N; �1 + 1) : −; (�2 + 1; � + n1 + �1 + 1);

⎞
⎟⎟⎠

or

Q�1 ; �2;�;Nn1 ;n2 (x) =
n1+n2∑
j=0

c( j)n1 ;n2(−x)j

with

c( j)n1 ;n2 =
(�1 + 1)n1(�2 + 1)n2(−N )n1+n2

(n1 + n2 + �1 + � + 1)n1(n1 + n2 + �2 + � + 1)n2

×
j∑
k=0

(−n1)k(−n2)j−k
k! (j − k)!

(� + �2 + n1 + n2 + 1)j−k(�1 + n1 + 1)j−k
(�2 + 1)j−k(� + n1 + �1 + 1)j−k

(� + n1 + �1 + 1)j
(−N )j(�1 + 1)j :

Property (4.4) now gives an expression for the coe�cients of the recurrence relation

xPn1 ;n2(x) = Pn1+1;n2(x) + bn1 ;n2Pn1 ;n2(x) + cn1 ;n2Pn1 ;n2−1(x) + dn1 ;n2Pn1−1;n2−1(x);

06 n1 + n26N , where Pn1 ;n2(x) = Q
�1 ; �2;�;N
n1 ;n2 (x). After some calculations we �nd that

bn1 ;n2 =A(n1; n2; �1; �2; N ) + A(n2; n1; �2; �1 + 1; N ) + D(n1; n2; �1; �2)

+C(n1 + 1; n2 + 1; �1; �2; N );
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cn1 ;n2 = (A(n1; n2; �1; �2; N ) + A(n2; n1; �2; �1 + 1; N ) + D(n1; n2; �1; �2))

×C(n2; n1 + 1; �2; �1; N ) + A(n1; n2; �1; �2; N )B(n1; n2; �1; �2; N );

dn1 ;n2 = A(n1; n2; �1; �2; N )B(n1; n2; �1; �2; N )C(n1; n2; �1; �2; N ) (4.17)

with

A(n1; n2; �1; �2; N ) =
n1(n1 + n2 + � + �2)(n1 + n2 + �)(� + n1 + �1 + 1 + N )

(n1 + 2n2 + � + �2)(2n1 + n2 + � + �1)(2n1 + n2 + � + �1 + 1)
;

B(n1; n2; �1; �2; N )

=
(n1 + �1 − �2)(n1 + n2 + � + �1)(n1 + n2 + � − 1)(N − n1 − n2 + 1)
(n1 + 2n2 + � + �2 − 1)(2n1 + n2 + � + �1)(2n1 + n2 + � + �1 − 1) ;

C(n1; n2; �1; �2; N )

=
(n1 + �1)(n1 + n2 + � + �1 − 1)(n1 + n2 + � + �2 − 1)(N − n1 − n2 + 2)
(n1 + 2n2 + � + �2 − 2)(2n1 + n2 + � + �1 − 2)(2n1 + n2 + � + �1 − 1) ;

D(n1; n2; �1; �2) =
(� + n1 + n2)n1n2

(2n1 + n2 + �1 + � + 1)(n1 + 2n2 + �2 + �)
:

5. Conclusions

We have studied �ve examples of discrete multiple orthogonal polynomials. Each system forms
an AT system. As in the case of the classical orthogonal polynomials we can consider the multiple
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orthogonal polynomials of Charlier, Meixner I, Meixner II and Kravchuk as limiting cases of the
multiple Hahn polynomials.
The limit relations are

M�;c1 ; c2
n1 ;n2 (x) = (−1)n1+n2 lim

N→+∞Q
((1−c1)=c1)N; ((1−c2)=c2)N ;�−1;N
n1 ;n2 (N − x);

M�1 ; �2;c
n1 ;n2 (x) = lim

N→+∞Q
�1−1; �2−1;((1−c)=c)N ;N
n1 ;n2 (x);

Kp1 ;p2;Nn1 ;n2 (x) = (−1)n1+n2 lim
t→+∞Q

−t=p1 ;−t=p2;−N−1;t
n1 ;n2 (t − x);

Ca1 ; a2n1 ;n2 (x) = lim
�→+∞

M�;a1=�;a2=�
n1 ;n2 (x);

Ca1 ; a2n1 ;n2 (x) = lim
N→∞K

a1=N;a2=N ;N
n1 ;n2 (x):

In the continuous case, studied in [10,3], there are also examples of Angelesco systems, where
the measures are supported on disjoint (or touching) intervals. In the discrete case it is not ob-
vious to �nd such systems which still have some raising operators, a Rodrigues formula,
etc.
It is of interest to look at the limit of the coe�cients in the recurrence relation for the multiple

orthogonal polynomials (in the case r=2) when we set n1 = �sn�, n2 = �tn� and n tends to in�nity.
These results are useful for an asymptotic study on these polynomials. For our examples of discrete
multiple orthogonal polynomials we have

Ca1 ; a2n1 ;n2 M�;c1 ; c2
n1 ;n2 M�1 ; �2;c

n1 ;n2

lim
n→+∞

b�sn�;�tn�
n

s+ t s(2a1 + 1) + t(a1 + a2 + 1) s(2a+ 1) + t(a+ 1)

lim
n→+∞

c�sn�;�tn�
n2

0 (s+ t)(s(a21 + a1) + t(a
2
2 + a2)) a(a+ 1)(s2 + st + t2)

lim
n→+∞

d�sn�;�tn�
n3

0 a1(a1 − a2)(a1 + 1)s(s+ t)2 a2(a+ 1)s3

Here a1 = c1=(1 − c1) and a2 = c2=(1 − c2) in the third column and a = c=(1 − c) in the last
column. For the multiple orthogonal polynomials of Krawtchouk and Hahn we can set n1 = �sN�,
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n2 = �tN�, s; t ¿ 0, s+ t ¡ 1 and take the limit when N tends to in�nity. This gives

Kp1 ;p2;Nn1 ;n2 Q�1 ; �2;�;Nn1 ;n2

lim
N→+∞

b�sN�;�tN�
N

p1 − s(2p1 − 1)− t(p1 + p2 − 1) A(s; t) + A(t; s) + D(s; t) + B(s; t)

lim
N→+∞

c�sN�;�tN�
N 2

(s+ t − 1)(s(p21 − p1) + t(p22 − p2)) (A(s; t) + A(t; s) + D(s; t))B(t; s)

+A(s; t)B(s; t)

lim
N→+∞

d�sN�;�tN�
N 3

p1(p1 − p2)(1− p1)s(s+ t − 1)2 A(s; t)B(s; t)2

where

A(s; t) =
s(1 + s)(s+ t)2

(s+ 2t)(t + 2s)2
;

B(s; t) =
(1− s− t)s(s+ t)2
(s+ 2t)(t + 2s)2

;

D(s; t) =
(s+ t)st

(t + 2s)(s+ 2t)
:

Appendix A

Here we prove Example 2.2, namely that functions (2.5), with �i ¿ 0 and �i − �j �∈ Z if i �= j,
and v a continuous function which has no zeros on R+ form a Chebyshev system on R+ for every
ñ = (n1; : : : ; nr)∈Nr . This means that every linear combination of these functions (except the one
with each coe�cient equal to 0) has at most |̃n|−1 zeros. Such a linear combination is also a linear
combination of the functions

v(x)�(�1 + x); v(x)(x + �1)�(�1 + x); : : : ; v(x)(x + �1)n1−1�(�1 + x);

...

v(x)�(�r + x); v(x)(x + �r)�(�r + x); : : : ; v(x)(x + �r)nr−1�(�r + x)
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and because of z�(z) = �(z + 1), these functions are also

v(x)�(�1 + x); v(x)�(�1 + x + 1); : : : ; v(x)�(�1 + x + n1 − 1);
...

v(x)�(�r + x); v(x)�(�r + x + 1); : : : ; v(x)�(�r + x + nr − 1):
(A.1)

So it is su�cient to show that the functions (A.1) form a Chebyshev system on R+ for every
ñ= (n1; : : : ; nr)∈Nr . If we take m= |̃n| and de�ne the matrix Z (̃n; x1; : : : ; xm) as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�(�1 + x1) �(�1 + x2) : : : �(�1 + xm)

...
...

...

�(�1 + x1 + n1 − 1) �(�1 + x2 + n1 − 1) : : : �(�1 + xm + n1 − 1)
...

...
...

...
...

...

�(�r + x1) �(�r + x2) : : : �(�r + xm)

...
...

...

�(�r + x1 + nr − 1) �(�r + x2 + nr − 1) : : : �(�r + xm + nr − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

then we have to show that v(x1) : : : v(xm) det Z (̃n; x1; : : : ; xm) �= 0, which is equivalent to det Z (̃n; x1; : : : ;
xm) �= 0 for every m di�erent points x1; : : : ; xm in R+ (the function v has no zeros on R+). We can
now use the de�nition of the Gamma function

�(x) =
∫ ∞

0
tx−1e−t dt; x¿ 0

to �nd that

det Z(ñ; x1; : : : ; xm) =
∫ ∞

0
: : :

∫ ∞

0︸ ︷︷ ︸
m times

e−t1 tx1−11 : : : e−tm txm−1m detC(ñ; t1; : : : ; tm) dt1 : : : dtm (A.2)
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with

C (̃n; t1; : : : ; tm) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t�11 t�12 : : : t�1m

t�1+11 t�1+12 : : : t�1+1m

...
...

...

t�1+n1−11 t�1+n1−12 : : : t�1+n1−1m

...
...

...

...
...

...

t�r1 t�r2 : : : t�rm

t�r+11 t�r+12 : : : t�r+1m

...
...

...

t�r+nr−11 t�r+nr−12 : : : t�r+nr−1m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

:

From [8, p. 138, Example 4] we know that the functions t�1 ; t�1+1; : : : ; t�1+n1−1; : : : ; t�r ; t�r+1, : : : ;
t�r+nr−1 form a Chebyshev system on R+ if all the exponents are di�erent, which holds because
�i − �j �∈ Z, i �= j. If all ni ¡N + 1 then the exponents are di�erent if �i − �j �∈ {0; 1; : : : ; N − 1}
whenever i �= j. So detC (̃n; t1; : : : ; tm) is di�erent from zero if and only all the t1; : : : ; tm are di�erent.
We can then write

det Z (̃n; x1; : : : ; xm)

=
∫
0¡t1¡···¡tm

e−
∑m

j=1 tjdetC (̃n; t1; : : : ; tm)
∑
�∈Sm

(−1)sign(�)tx1−1�(1) : : : t
xm−1
�(m) dt1 : : : dtm; (A.3)

with Sm the permutation group. From the de�nition of the determinant of a matrix we see that

∑
�∈Sm

(−1)sign(�)tx1−1�(1) : : : t
xm−1
�(m) =

∣∣∣∣∣∣∣∣∣∣∣∣

tx1−11 tx2−11 : : : txm−11

tx1−12 tx2−12 : : : txm−12

...
...

...

tx1−1m tx2−1m : : : txm−1m

∣∣∣∣∣∣∣∣∣∣∣∣
:

The t1; : : : ; tm are strictly positive and di�erent, and Example 2.1 with multi-index (1; : : : ; 1) then im-
plies that this is di�erent from zero if all the x1; : : : ; xm are di�erent. So, if the x1; : : : ; xm are di�erent,
then the integrand of (A.3) has constant sign in the integration area and hence det Z (̃n; x1; : : : ; xm) is
di�erent from zero.
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