1,764 research outputs found

    Isolation of a Novel Phage with Activity against Streptococcus mutans Biofilms

    Get PDF
    peer-reviewedStreptococcus mutans is one of the principal agents of caries formation mainly, because of its ability to form biofilms at the tooth surface. Bacteriophages (phages) are promising antimicrobial agents that could be used to prevent or treat caries formation by S. mutans. The aim of this study was to isolate new S. mutans phages and to characterize their antimicrobial properties. A new phage, ɸAPCM01, was isolated from a human saliva sample. Its genome was closely related to the only two other available S. mutans phage genomes, M102 and M102AD. ɸAPCM01 inhibited the growth of S. mutans strain DPC6143 within hours in broth and in artificial saliva at multiplicity of infections as low as 2.5x10-5. In the presence of phage ɸAPCM01 the metabolic activity of a S. mutans biofilm was reduced after 24 h of contact and did not increased again after 48 h, and the live cells in the biofilm decreased by at least 5 log cfu/ml. Despite its narrow host range, this newly isolated S. mutans phage exhibits promising antimicrobial properties

    A case series of intraosseous hemangioma of the jaws : various presentations of a rare entity

    Get PDF
    Hemangiomas of the soft tissue are common in the head and neck area, especially in the tongue and in children under ten years of age. Intraosseous hemangiomas of the mandible and maxilla (IHM), on the other hand, are exceedingly rare and are not well characterized. This study presents six IHM cases focusing on the clinical, radiographic, and histologic characteristics. Six cases of IHM were retrieved from the archives of the Biopsy Services at the University of Washington. Clinical, radiologic, and histologic findings are described. A total of six cases of IHM were reviewed. The patient age range was 16 to 65; the group comprised three females and three males. All six cases presented as swellings, two caused tooth resorption, and one was associated with pain and numbness. Three of the six IHM were present in the body of the mandible, two in the area of the extracted right mandibular third molar, and one in the anterior maxilla between the right canine and lateral incisor. Radiographically, five were radiolucent and one was radiopaque. Of the five radiolucent, two were unilocular and three multilocular. The one radiopaque case was exophytic, simulating a large osteoma. Histologic features ranged from cavernous to a mix of venous and arterial types. Follow-up is available for all six cases ranging between one to seven years; only one case recurred within the first year post-surgery. IHM are exceedingly rare; IHM do not present in a consistent manner both clinically and radiographically. It is therefore important to recognize the wide spectrum of IHM?s clinical, radiographic, and histological presentations

    Three-wave mixing mediated femtosecond pulse compression in BBO

    Get PDF
    Nonlinear pulse compression mediated by three-wave mixing is demonstrated for ultrashort Ti:sapphire pulses in a type II phase-matched �β-barium borate (BBO) crystal using noncollinear geometry. 170 μJ pulses at 800 nm with a pulse duration of 74 fs are compressed at their sum frequency to 32 fs with 55 μJ of pulse energy. Experiments and computer simulations demonstrate the potential of sum-frequency pulse compression to match the group velocities of the interacting waves to crystals that were initially not considered in the context of nonlinear pulse compression.Peer ReviewedPostprint (author's final draft

    Universal scattering behavior of co-assembled nanoparticle-polymer clusters

    Full text link
    Water-soluble clusters made from 7 nm inorganic nanoparticles have been investigated by small-angle neutron scattering. The internal structure factor of the clusters was derived and exhibited a universal behavior as evidenced by a correlation hole at intermediate wave-vectors. Reverse Monte-Carlo calculations were performed to adjust the data and provided an accurate description of the clusters in terms of interparticle distance and volume fraction. Additional parameters influencing the microstructure were also investigated, including the nature and thickness of the nanoparticle adlayer.Comment: 5 pages, 4 figures, paper published in Physical Review

    The Hunt for the “Holy Grail”: Condensed Tannins in Perennial Forage Legumes

    Get PDF
    A recent advance using molecular biology has identified a transcription factor or master switch that can ‘turn on’ the condensed tannin pathway present in white clover, and with the appropriate promoters allows biologically significant levels of condensed tannin expression in leaf tissue. In vitro tests have demonstrated that the condensed tannins produced in white clover leaves can bind protein at a pH 6.5, as found in the rumen, and then release them at pH 2.5, the pH in the abomasum, before entering the small intestine for amino acid absorption. Additional tests have demonstrated that these condensed tannins can reduce methane production by up to 25% in the first 6 hours of incubation. The journey to this point and the challenges ahead to deliver white clover cultivars with condensed tannin expression will be described

    The Synaptic Vesicle Cycle Revisited:New Insights into the Modes and Mechanisms

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Neuroscience 39(42), (2019): 8209-8216, doi:10.1523/JNEUROSCI.1158-19.2019.Neurotransmission is sustained by endocytosis and refilling of synaptic vesicles (SVs) locally within the presynapse. Until recently, a consensus formed that after exocytosis, SVs are recovered by either fusion pore closure (kiss-and-run) or clathrin-mediated endocytosis directly from the plasma membrane. However, recent data have revealed that SV formation is more complex than previously envisaged. For example, two additional recycling pathways have been discovered, ultrafast endocytosis and activity-dependent bulk endocytosis, in which SVs are regenerated from the internalized membrane and synaptic endosomes. Furthermore, these diverse modes of endocytosis appear to influence both the molecular composition and subsequent physiological role of individual SVs. In addition, previously unknown complexity in SV refilling and reclustering has been revealed. This review presents a modern view of the SV life cycle and discusses how neuronal subtype, physiological temperature, and individual activity patterns can recruit different endocytic modes to generate new SVs and sculpt subsequent presynaptic performance.This work was supported by: Schram-Stiftung T287/25457 and Deutsche Forschungsgemeinschaft (Emmy Noether Young Investigator Award MI-1702/1 to I.M.); the Wellcome Trust (204954/Z/16/Z to M.A.C.); the National Science Foundation (1727260 to S.W.), the National Institutes of Health (NINDS DP2 NS111133 and R01 NS105810 to S.W.); the McKnight Foundation (S.W.); the Sloan Foundation (S.W.); and the National Institutes of Health (NINDS/NIA R01 NS078165 to J.R.M. and NIMH R01 MH066198 to Dr. Ege Kavalali, which supports N.L.C.). We thank Dragomir Milovanovic for helpful comments on this manuscript.2020-04-1
    corecore