3,878 research outputs found

    Fly-automata for checking MSO 2 graph properties

    Full text link
    A more descriptive but too long title would be : Constructing fly-automata to check properties of graphs of bounded tree-width expressed by monadic second-order formulas written with edge quantifications. Such properties are called MSO2 in short. Fly-automata (FA) run bottom-up on terms denoting graphs and compute "on the fly" the necessary states and transitions instead of looking into huge, actually unimplementable tables. In previous works, we have constructed FA that process terms denoting graphs of bounded clique-width, in order to check their monadic second-order (MSO) properties (expressed by formulas without edge quan-tifications). Here, we adapt these FA to incidence graphs, so that they can check MSO2 properties of graphs of bounded tree-width. This is possible because: (1) an MSO2 property of a graph is nothing but an MSO property of its incidence graph and (2) the clique-width of the incidence graph of a graph is linearly bounded in terms of its tree-width. Our constructions are actually implementable and usable. We detail concrete constructions of automata in this perspective.Comment: Submitted for publication in December 201

    Rank-width of Random Graphs

    Get PDF
    Rank-width of a graph G, denoted by rw(G), is a width parameter of graphs introduced by Oum and Seymour (2006). We investigate the asymptotic behavior of rank-width of a random graph G(n,p). We show that, asymptotically almost surely, (i) if 0<p<1 is a constant, then rw(G(n,p)) = \lceil n/3 \rceil-O(1), (ii) if 1/n<< p <1/2, then rw(G(n,p))= \lceil n/3\rceil-o(n), (iii) if p = c/n and c > 1, then rw(G(n,p)) > r n for some r = r(c), and (iv) if p <= c/n and c<1, then rw(G(n,p)) <=2. As a corollary, we deduce that G(n,p) has linear tree-width whenever p=c/n for each c>1, answering a question of Gao (2006).Comment: 10 page

    Computations by fly-automata beyond monadic second-order logic

    Full text link
    We present logically based methods for constructing XP and FPT graph algorithms, parametrized by tree-width or clique-width. We will use fly-automata introduced in a previous article. They make possible to check properties that are not monadic second-order expressible because their states may include counters, so that their sets of states may be infinite. We equip these automata with output functions, so that they can compute values associated with terms or graphs. Rather than new algorithmic results we present tools for constructing easily certain dynamic programming algorithms by combining predefined automata for basic functions and properties.Comment: Accepted for publication in Theoretical Computer Scienc

    Monadic second-order definable graph orderings

    Full text link
    We study the question of whether, for a given class of finite graphs, one can define, for each graph of the class, a linear ordering in monadic second-order logic, possibly with the help of monadic parameters. We consider two variants of monadic second-order logic: one where we can only quantify over sets of vertices and one where we can also quantify over sets of edges. For several special cases, we present combinatorial characterisations of when such a linear ordering is definable. In some cases, for instance for graph classes that omit a fixed graph as a minor, the presented conditions are necessary and sufficient; in other cases, they are only necessary. Other graph classes we consider include complete bipartite graphs, split graphs, chordal graphs, and cographs. We prove that orderability is decidable for the so called HR-equational classes of graphs, which are described by equation systems and generalize the context-free languages

    On the Monadic Second-Order Transduction Hierarchy

    Full text link
    We compare classes of finite relational structures via monadic second-order transductions. More precisely, we study the preorder where we set C \subseteq K if, and only if, there exists a transduction {\tau} such that C\subseteq{\tau}(K). If we only consider classes of incidence structures we can completely describe the resulting hierarchy. It is linear of order type {\omega}+3. Each level can be characterised in terms of a suitable variant of tree-width. Canonical representatives of the various levels are: the class of all trees of height n, for each n \in N, of all paths, of all trees, and of all grids

    Tree-depth and vertex-minors

    Get PDF
    Abstract In a recent paper Kwon and Oum (2014), Kwon and Oum claim that every graph of bounded rank-width is a pivot-minor of a graph of bounded tree-width (while the converse has been known true already before). We study the analogous questions for “depth” parameters of graphs, namely for the tree-depth and related new shrub-depth. We show how a suitable adaptation of known results implies that shrub-depth is monotone under taking vertex-minors, and we prove that every graph class of bounded shrub-depth can be obtained via vertex-minors of graphs of bounded tree-depth. While we exhibit an example that pivot-minors are generally not sufficient (unlike Kwon and Oum (2014)) in the latter statement, we then prove that the bipartite graphs in every class of bounded shrub-depth can be obtained as pivot-minors of graphs of bounded tree-depth

    Regular Combinators for String Transformations

    Full text link
    We focus on (partial) functions that map input strings to a monoid such as the set of integers with addition and the set of output strings with concatenation. The notion of regularity for such functions has been defined using two-way finite-state transducers, (one-way) cost register automata, and MSO-definable graph transformations. In this paper, we give an algebraic and machine-independent characterization of this class analogous to the definition of regular languages by regular expressions. When the monoid is commutative, we prove that every regular function can be constructed from constant functions using the combinators of choice, split sum, and iterated sum, that are analogs of union, concatenation, and Kleene-*, respectively, but enforce unique (or unambiguous) parsing. Our main result is for the general case of non-commutative monoids, which is of particular interest for capturing regular string-to-string transformations for document processing. We prove that the following additional combinators suffice for constructing all regular functions: (1) the left-additive versions of split sum and iterated sum, which allow transformations such as string reversal; (2) sum of functions, which allows transformations such as copying of strings; and (3) function composition, or alternatively, a new concept of chained sum, which allows output values from adjacent blocks to mix.Comment: This is the full version, with omitted proofs and constructions, of the conference paper currently in submissio

    Transforming structures by set interpretations

    Get PDF
    We consider a new kind of interpretation over relational structures: finite sets interpretations. Those interpretations are defined by weak monadic second-order (WMSO) formulas with free set variables. They transform a given structure into a structure with a domain consisting of finite sets of elements of the orignal structure. The definition of these interpretations directly implies that they send structures with a decidable WMSO theory to structures with a decidable first-order theory. In this paper, we investigate the expressive power of such interpretations applied to infinite deterministic trees. The results can be used in the study of automatic and tree-automatic structures.Comment: 36 page

    Are there any good digraph width measures?

    Full text link
    Several different measures for digraph width have appeared in the last few years. However, none of them shares all the "nice" properties of treewidth: First, being \emph{algorithmically useful} i.e. admitting polynomial-time algorithms for all \MS1-definable problems on digraphs of bounded width. And, second, having nice \emph{structural properties} i.e. being monotone under taking subdigraphs and some form of arc contractions. As for the former, (undirected) \MS1 seems to be the least common denominator of all reasonably expressive logical languages on digraphs that can speak about the edge/arc relation on the vertex set.The latter property is a necessary condition for a width measure to be characterizable by some version of the cops-and-robber game characterizing the ordinary treewidth. Our main result is that \emph{any reasonable} algorithmically useful and structurally nice digraph measure cannot be substantially different from the treewidth of the underlying undirected graph. Moreover, we introduce \emph{directed topological minors} and argue that they are the weakest useful notion of minors for digraphs
    corecore