58 research outputs found

    Cycling infrastructure for reducing cycling injuries in cyclists

    Get PDF
    Background: Cycling is an attractive form of transport. It is beneficial to the individual as a form of physical activity that may fit more readily into an individual’s daily routine, such as for cycling to work and to the shops, than other physical activities such as visiting a gym. Cycling is also beneficial to the wider community and the environment as a result of fewer motorised journeys. Cyclists are seen as vulnerable road users who are frequently in close proximity to larger and faster motorised vehicles. Cycling infrastructure aims to make cycling both more convenient and safer for cyclists. This review is needed to guide transport planning. Objectives: To: 1. evaluate the effects of different types of cycling infrastructure on reducing cycling injuries in cyclists, by type of infrastructure; 2. evaluate the effects of cycling infrastructure on reducing the severity of cycling injuries in cyclists; 3. evaluate the effects of cycling infrastructure on reducing cycling injuries in cyclists with respect to age, sex and social group. Search methods: We ran the most recent search on 2nd March 2015. We searched the Cochrane Injuries Group Specialised Register, CENTRAL (The Cochrane Library), MEDLINE (OvidSP), Embase Classic + Embase(OvidSP), PubMed and 10 other databases. We searched websites, handsearched conference proceedings, screened reference lists of included studies and previously published reviews and contacted relevant organisations. Selection criteria: We included randomised controlled trials, cluster randomised controlled trials, controlled before-after studies, and interrupted time series studies which evaluated the effect of cycling infrastructure (such as cycle lanes, tracks or paths, speed management, roundabout design) on cyclist injury or collision rates. Studies had to include a comparator, that is, either no infrastructure or a different type of infrastructure. We excluded studies that assessed collisions that occurred as a result of competitive cycling. Data collection and analysis: Two review authors examined the titles and abstracts of papers obtained from searches to determine eligibility. Two review authors extracted data from the included trials and assessed the risk of bias. We carried out a meta-analysis using the random-effects model where at least three studies reported the same intervention and outcome. Where there were sufficient studies, as a secondary analysis we accounted for changes in cyclist exposure in the calculation of the rate ratios. We rated the quality of the evidence as ‘high’, ‘moderate’,‘low’ or ‘very low’ according to the GRADE approach for the installation of cycle routes and networks. Main results: We identified 21 studies for inclusion in the review: 20 controlled before-after (CBA) studies and one interrupted time series (ITS) study. These evaluated a range of infrastructure including cycle lanes, advanced stop lines, use of colour, cycle tracks, cycle paths, management of the road network, speed management, cycle routes and networks, roundabout design and packages of measures. No studies reported medically-attended or self-reported injuries. There was no evidence that cycle lanes reduce the rate of cycle collisions (rate ratio 1.21, 95% CI 0.70 to 2.08). Taking into account cycle flow, there was no difference in collisions for cyclists using cycle routes and networks compared with cyclists not using cycle routes and networks (RR 0.40, 95% CI 0.15 to 1.05). There was statistically significant heterogeneity between the studies (I² = 75%, Chi² = 8.00 df = 2, P = 0.02) for the analysis adjusted for cycle flow. We judged the quality of the evidence regarding cycle routes and networks as very low and we are very uncertain about the estimate. These analyses are based on findings from CBA studies. From data presented narratively, the use of 20 mph speed restrictions in urban areas may be effective at reducing cyclist collisions. Redesigning specific parts of cycle routes that may be particularly busy or complex in terms of traffic movement may be beneficial to cyclists in terms of reducing the risk of collision. Generally, the conversion of intersections to roundabouts may increase the number of cycle collisions. In particular, the conversion of intersections to roundabouts with cycle lanes marked as part of the circulating carriageway increased cycle collisions. However, the conversion of intersections with and without signals to roundabouts with cycle paths may reduce the odds of collision. Both continuing a cycle lane across the mouth of a side road with a give way line onto the main road, and cycle tracks, may increase the risk of injury collisions in cyclists. However, these conclusions are uncertain, being based on a narrative review of findings from included studies. There is a lack of evidence that cycle paths or advanced stop lines either reduce or increase injury collisions in cyclists. There is also insufficient evidence to draw any robust conclusions concerning the effect of cycling infrastructure on cycling collisions in terms of severity of injury, sex, age, and level of social deprivation of the casualty. In terms of quality of the evidence, there was little matching of intervention and control sites. In many studies, the comparability of the control area to the intervention site was unclear and few studies provided information on other cycling infrastructures that may be in place in the control and intervention areas. The majority of studies analysed data routinely collected by organisations external to the study team, thus reducing the risk of bias in terms of systematic differences in assessing outcomes between the control and intervention groups. Some authors did not take regression-to-mean effects into account when examining changes in collisions. Longer data collection periods pre- and post-installation would allow for regression-to-mean effects and also seasonal and time trends in traffic volume to be observed. Few studies adjusted cycle collision rates for exposure. Authors’ conclusions: Generally, there is a lack of high quality evidence to be able to draw firm conclusions as to the effect of cycling infrastructure on cycling collisions. There is a lack of rigorous evaluation of cycling infrastructure

    Dynamic updating of clinical survival prediction models in a changing environment

    Get PDF
    BackgroundOver time, the performance of clinical prediction models may deteriorate due to changes in clinical management, data quality, disease risk and/or patient mix. Such prediction models must be updated in order to remain useful. In this study, we investigate dynamic model updating of clinical survival prediction models. In contrast to discrete or one-time updating, dynamic updating refers to a repeated process for updating a prediction model with new data. We aim to extend previous research which focused largely on binary outcome prediction models by concentrating on time-to-event outcomes. We were motivated by the rapidly changing environment seen during the COVID-19 pandemic where mortality rates changed over time and new treatments and vaccines were introduced. MethodsWe illustrate three methods for dynamic model updating: Bayesian dynamic updating, recalibration, and full refitting. We use a simulation study to compare performance in a range of scenarios including changing mortality rates, predictors with low prevalence and the introduction of a new treatment. Next, the updating strategies were applied to a model for predicting 70-day COVID-19-related mortality using patient data from QResearch, an electronic health records database from general practices in the UK. ResultsIn simulated scenarios with mortality rates changing over time, all updating methods resulted in better calibration than not updating. Moreover, dynamic updating outperformed ad hoc updating. In the simulation scenario with a new predictor and a small updating dataset, Bayesian updating improved the C-index over not updating and refitting. In the motivating example with a rare outcome, no single updating method offered the best performance. ConclusionsWe found that a dynamic updating process outperformed one-time discrete updating in the simulations. Bayesian updating offered good performance overall, even in scenarios with new predictors and few events. Intercept recalibration was effective in scenarios with smaller sample size and changing baseline hazard. Refitting performance depended on sample size and produced abrupt changes in hazard ratio estimates between periods

    Predicting the future risk of lung cancer: development, and internal and external validation of the CanPredict (lung) model in 19·67 million people and evaluation of model performance against seven other risk prediction models

    Get PDF
    Lung cancer is the second most common cancer in incidence and the leading cause of cancer deaths worldwide. Meanwhile, lung cancer screening with low-dose CT can reduce mortality. The UK National Screening Committee recommended targeted lung cancer screening on Sept 29, 2022, and asked for more modelling work to be done to help refine the recommendation. This study aims to develop and validate a risk prediction model-the CanPredict (lung) model-for lung cancer screening in the UK and compare the model performance against seven other risk prediction models. For this retrospective, population-based, cohort study, we used linked electronic health records from two English primary care databases: QResearch (Jan 1, 2005-March 31, 2020) and Clinical Practice Research Datalink (CPRD) Gold (Jan 1, 2004-Jan 1, 2015). The primary study outcome was an incident diagnosis of lung cancer. We used a Cox proportional-hazards model in the derivation cohort (12·99 million individuals aged 25-84 years from the QResearch database) to develop the CanPredict (lung) model in men and women. We used discrimination measures (Harrell's C statistic, D statistic, and the explained variation in time to diagnosis of lung cancer [R ]) and calibration plots to evaluate model performance by sex and ethnicity, using data from QResearch (4·14 million people for internal validation) and CPRD (2·54 million for external validation). Seven models for predicting lung cancer risk (Liverpool Lung Project [LLP] , LLP , Lung Cancer Risk Assessment Tool [LCRAT], Prostate, Lung, Colorectal, and Ovarian [PLCO] , PLCO , Pittsburgh, and Bach) were selected to compare their model performance with the CanPredict (lung) model using two approaches: (1) in ever-smokers aged 55-74 years (the population recommended for lung cancer screening in the UK), and (2) in the populations for each model determined by that model's eligibility criteria. There were 73 380 incident lung cancer cases in the QResearch derivation cohort, 22 838 cases in the QResearch internal validation cohort, and 16 145 cases in the CPRD external validation cohort during follow-up. The predictors in the final model included sociodemographic characteristics (age, sex, ethnicity, Townsend score), lifestyle factors (BMI, smoking and alcohol status), comorbidities, family history of lung cancer, and personal history of other cancers. Some predictors were different between the models for women and men, but model performance was similar between sexes. The CanPredict (lung) model showed excellent discrimination and calibration in both internal and external validation of the full model, by sex and ethnicity. The model explained 65% of the variation in time to diagnosis of lung cancer R in both sexes in the QResearch validation cohort and 59% of the R in both sexes in the CPRD validation cohort. Harrell's C statistics were 0·90 in the QResearch (validation) cohort and 0·87 in the CPRD cohort, and the D statistics were 2·8 in the QResearch (validation) cohort and 2·4 in the CPRD cohort. Compared with seven other lung cancer prediction models, the CanPredict (lung) model had the best performance in discrimination, calibration, and net benefit across three prediction horizons (5, 6, and 10 years) in the two approaches. The CanPredict (lung) model also had higher sensitivity than the current UK recommended models (LLP and PLCO ), as it identified more lung cancer cases than those models by screening the same amount of individuals at high risk. The CanPredict (lung) model was developed, and internally and externally validated, using data from 19·67 million people from two English primary care databases. Our model has potential utility for risk stratification of the UK primary care population and selection of individuals at high risk of lung cancer for targeted screening. If our model is recommended to be implemented in primary care, each individual's risk can be calculated using information in the primary care electronic health records, and people at high risk can be identified for the lung cancer screening programme. Innovate UK (UK Research and Innovation). For the Chinese translation of the abstract see Supplementary Materials section. [Abstract copyright: Copyright © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.

    Antidepressant use and risk of epilepsy and seizures in people aged 20 to 64 years: cohort study using a primary care database

    Get PDF
    Background: Epilepsy is a serious condition which can profoundly affect an individual’s life. While there is some evidence to suggest an association between antidepressant use and epilepsy and seizures it is conflicting and not conclusive. Antidepressant prescribing is rising in the UK so it is important to quantify absolute risks with individual antidepressants to enable shared decision making with patients. In this study we assess and quantify the association between antidepressant treatment and the risk of epilepsy and seizures in a large cohort of patients diagnosed with depression aged between 20 and 64 years. Methods: Data on 238,963 patients with a diagnosis of depression aged 20 to 64 from 687 UK practices were extracted from the QResearch primary care database. We used Cox’s proportional hazards to analyse the time to the first recorded diagnosis of epilepsy/seizures, excluding patients with a prior history and estimated hazard ratios for antidepressant exposure adjusting for potential confounding variables. Results: In the first 5 years of follow-up, 878 (0.37 %) patients had a first diagnosis of epilepsy/seizures with the hazard ratio (HR) significantly increased (P < 0.01) for all antidepressant drug classes and for 8 of the 11 most commonly prescribed drugs. The highest risks (in the first 5 years) compared with no treatment were for trazodone (HR 5.41, 95 % confidence interval (CI) 3.05 to 9.61, number needed to harm (NNH) 65), lofepramine (HR 3.09, 95 % CI 1.73 to 5.50, NNH 138), venlafaxine (HR 2.84, 95 % CI 1.97 to 4.08, NNH 156) and combined antidepressant treatment (HR 2.73, 95 % CI 1.52 to 4.91, NNH 166). Conclusions: Risk of epilepsy/seizures is significantly increased for all classes of antidepressant. There is a need for individual risk-benefit assessments in patients being considered for antidepressant treatment, especially those with ongoing mild depression or with additional risk factors. Residual confounding and indication bias may influence our results, so confirmation may be required from additional studies

    Development and validation of a new algorithm for improved cardiovascular risk prediction

    Get PDF
    QRISK algorithms use data from millions of people to help clinicians identify individuals at high risk of cardiovascular disease (CVD). Here, we derive and externally validate a new algorithm, which we have named QR4, that incorporates novel risk factors to estimate 10-year CVD risk separately for men and women. Health data from 9.98 million and 6.79 million adults from the United Kingdom were used for derivation and validation of the algorithm, respectively. Cause-specific Cox models were used to develop models to predict CVD risk, and the performance of QR4 was compared with version 3 of QRISK, Systematic Coronary Risk Evaluation 2 (SCORE2) and atherosclerotic cardiovascular disease (ASCVD) risk scores. We identified seven novel risk factors in models for both men and women (brain cancer, lung cancer, Down syndrome, blood cancer, chronic obstructive pulmonary disease, oral cancer and learning disability) and two additional novel risk factors in women (pre-eclampsia and postnatal depression). On external validation, QR4 had a higher C statistic than QRISK3 in both women (0.835 (95% confidence interval (CI), 0.833–0.837) and 0.831 (95% CI, 0.829–0.832) for QR4 and QRISK3, respectively) and men (0.814 (95% CI, 0.812–0.816) and 0.812 (95% CI, 0.810–0.814) for QR4 and QRISK3, respectively). QR4 was also more accurate than the ASCVD and SCORE2 risk scores in both men and women. The QR4 risk score identifies new risk groups and provides superior CVD risk prediction in the United Kingdom compared with other international scoring systems for CVD risk

    Risk of thrombocytopenia and thromboembolism after covid-19 vaccination and SARS-CoV-2 positive testing: self-controlled case series study.

    Get PDF
    ObjectiveTo assess the association between covid-19 vaccines and risk of thrombocytopenia and thromboembolic events in England among adults.DesignSelf-controlled case series study using national data on covid-19 vaccination and hospital admissions.SettingPatient level data were obtained for approximately 30 million people vaccinated in England between 1 December 2020 and 24 April 2021. Electronic health records were linked with death data from the Office for National Statistics, SARS-CoV-2 positive test data, and hospital admission data from the United Kingdom's health service (NHS).Participants29 121 633 people were vaccinated with first doses (19 608 008 with Oxford-AstraZeneca (ChAdOx1 nCoV-19) and 9 513 625 with Pfizer-BioNTech (BNT162b2 mRNA)) and 1 758 095 people had a positive SARS-CoV-2 test. People aged ≥16 years who had first doses of the ChAdOx1 nCoV-19 or BNT162b2 mRNA vaccines and any outcome of interest were included in the study.Main outcome measuresThe primary outcomes were hospital admission or death associated with thrombocytopenia, venous thromboembolism, and arterial thromboembolism within 28 days of three exposures: first dose of the ChAdOx1 nCoV-19 vaccine; first dose of the BNT162b2 mRNA vaccine; and a SARS-CoV-2 positive test. Secondary outcomes were subsets of the primary outcomes: cerebral venous sinus thrombosis (CVST), ischaemic stroke, myocardial infarction, and other rare arterial thrombotic events.ResultsThe study found increased risk of thrombocytopenia after ChAdOx1 nCoV-19 vaccination (incidence rate ratio 1.33, 95% confidence interval 1.19 to 1.47 at 8-14 days) and after a positive SARS-CoV-2 test (5.27, 4.34 to 6.40 at 8-14 days); increased risk of venous thromboembolism after ChAdOx1 nCoV-19 vaccination (1.10, 1.02 to 1.18 at 8-14 days) and after SARS-CoV-2 infection (13.86, 12.76 to 15.05 at 8-14 days); and increased risk of arterial thromboembolism after BNT162b2 mRNA vaccination (1.06, 1.01 to 1.10 at 15-21 days) and after SARS-CoV-2 infection (2.02, 1.82 to 2.24 at 15-21 days). Secondary analyses found increased risk of CVST after ChAdOx1 nCoV-19 vaccination (4.01, 2.08 to 7.71 at 8-14 days), after BNT162b2 mRNA vaccination (3.58, 1.39 to 9.27 at 15-21 days), and after a positive SARS-CoV-2 test; increased risk of ischaemic stroke after BNT162b2 mRNA vaccination (1.12, 1.04 to 1.20 at 15-21 days) and after a positive SARS-CoV-2 test; and increased risk of other rare arterial thrombotic events after ChAdOx1 nCoV-19 vaccination (1.21, 1.02 to 1.43 at 8-14 days) and after a positive SARS-CoV-2 test.ConclusionIncreased risks of haematological and vascular events that led to hospital admission or death were observed for short time intervals after first doses of the ChAdOx1 nCoV-19 and BNT162b2 mRNA vaccines. The risks of most of these events were substantially higher and more prolonged after SARS-CoV-2 infection than after vaccination in the same population

    Preexisting Neuropsychiatric Conditions and Associated Risk of Severe COVID-19 Infection and Other Acute Respiratory Infections

    Get PDF
    Importance Evidence indicates that preexisting neuropsychiatric conditions confer increased risks of severe outcomes from COVID-19 infection. It is unclear how this increased risk compares with risks associated with other severe acute respiratory infections (SARIs).Objective To determine whether preexisting diagnosis of and/or treatment for a neuropsychiatric condition is associated with severe outcomes from COVID-19 infection and other SARIs and whether any observed association is similar between the 2 outcomes.Design, Setting, and Participants Prepandemic (2015-2020) and contemporary (2020-2021) longitudinal cohorts were derived from the QResearch database of English primary care records. Adjusted hazard ratios (HRs) with 99% CIs were estimated in April 2022 using flexible parametric survival models clustered by primary care clinic. This study included a population-based sample, including all adults in the database who had been registered with a primary care clinic for at least 1 year. Analysis of routinely collected primary care electronic medical records was performed.Exposures Diagnosis of and/or medication for anxiety, mood, or psychotic disorders and diagnosis of dementia, depression, schizophrenia, or bipolar disorder.Main Outcomes and Measures COVID-19–related mortality, or hospital or intensive care unit admission; SARI-related mortality, or hospital or intensive care unit admission.Results The prepandemic cohort comprised 11 134 789 adults (223 569 SARI cases [2.0%]) with a median (IQR) age of 42 (29-58) years, of which 5 644 525 (50.7%) were female. The contemporary cohort comprised 8 388 956 adults (58 203 severe COVID-19 cases [0.7%]) with a median (IQR) age of 48 (34-63) years, of which 4 207 192 were male (50.2%). Diagnosis and/or treatment for neuropsychiatric conditions other than dementia was associated with an increased likelihood of a severe outcome from SARI (anxiety diagnosis: HR, 1.16; 99% CI, 1.13-1.18; psychotic disorder diagnosis and treatment: HR, 2.56; 99% CI, 2.40-2.72) and COVID-19 (anxiety diagnosis: HR, 1.16; 99% CI, 1.12-1.20; psychotic disorder treatment: HR, 2.37; 99% CI, 2.20-2.55). The effect estimate for severe outcome with dementia was higher for those with COVID-19 than SARI (HR, 2.85; 99% CI, 2.71-3.00 vs HR, 2.13; 99% CI, 2.07-2.19).Conclusions and Relevance In this longitudinal cohort study, UK patients with preexisting neuropsychiatric conditions and treatments were associated with similarly increased risks of severe outcome from COVID-19 infection and SARIs, except for dementia
    • …
    corecore