
Tanner et al. 
Diagnostic and Prognostic Research            (2023) 7:24  
https://doi.org/10.1186/s41512-023-00163-z

METHODOLOGY Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Diagnostic and
Prognostic Research

Dynamic updating of clinical survival 
prediction models in a changing environment
Kamaryn T. Tanner1*   , Ruth H. Keogh1, Carol A. C. Coupland2,3, Julia Hippisley‑Cox2 and Karla Diaz‑Ordaz4 

Abstract 

Background  Over time, the performance of clinical prediction models may deteriorate due to changes in clini‑
cal management, data quality, disease risk and/or patient mix. Such prediction models must be updated in order 
to remain useful. In this study, we investigate dynamic model updating of clinical survival prediction models. In 
contrast to discrete or one-time updating, dynamic updating refers to a repeated process for updating a prediction 
model with new data. We aim to extend previous research which focused largely on binary outcome prediction 
models by concentrating on time-to-event outcomes. We were motivated by the rapidly changing environment seen 
during the COVID-19 pandemic where mortality rates changed over time and new treatments and vaccines were 
introduced.

Methods  We illustrate three methods for dynamic model updating: Bayesian dynamic updating, recalibration, 
and full refitting. We use a simulation study to compare performance in a range of scenarios including changing 
mortality rates, predictors with low prevalence and the introduction of a new treatment. Next, the updating strate‑
gies were applied to a model for predicting 70-day COVID-19-related mortality using patient data from QResearch, 
an electronic health records database from general practices in the UK.

Results  In simulated scenarios with mortality rates changing over time, all updating methods resulted in bet‑
ter calibration than not updating. Moreover, dynamic updating outperformed ad hoc updating. In the simulation 
scenario with a new predictor and a small updating dataset, Bayesian updating improved the C-index over not updat‑
ing and refitting. In the motivating example with a rare outcome, no single updating method offered the best 
performance.

Conclusions  We found that a dynamic updating process outperformed one-time discrete updating in the simula‑
tions. Bayesian updating offered good performance overall, even in scenarios with new predictors and few events. 
Intercept recalibration was effective in scenarios with smaller sample size and changing baseline hazard. Refitting 
performance depended on sample size and produced abrupt changes in hazard ratio estimates between periods.
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Background
Clinical prediction models are widely used in medicine 
to provide patients and clinicians with information about 
the predicted risk of an outcome, to guide treatment 
plans, and to identify high-risk groups. Although the best 
of these models go through a thorough development and 
validation process, performance may deteriorate over 
time as clinical practices change, mortality or disease risk 
in the population changes and/or the patient mix shifts 
[1–3]. After evidence of poor performance, a common 
response is to repeat the model development by fitting a 
new model to a new set of data [4]. However, the result-
ing ‘new’ model fails to incorporate knowledge learned 
in the initial development process, may not include the 
same predictors and could be confusing for end-users 
of the original model [2]. A technique for updating the 
existing prediction model rather than redeveloping a new 
one can alleviate these issues.

A variety of methods have been proposed and studied 
for updating clinical prediction models with the majority 
having been applied to binary outcome models based on 
logistic regression. Previous studies have compared recal-
ibration, refitting (with or without shrinkage), Bayesian 
methods and testing procedures for selecting the ‘best’ 
updating method across a variety of scenarios [3–13]. 
No single updating method was best across these studies. 
Rather, the best updating method was found to depend 
on the sample size of the updating data, event rate, model 
complexity and whether associations of the predictors 
with the outcome had changed [4, 6, 7, 9, 12]. In particu-
lar, refitting was found to overfit the new data and yield 
unstable coefficient estimates in parametric models when 
the updating sample size was small or the number of 
events was low [3, 6, 7, 11]. Recalibration performed as 
well as or better than refitting, particularly when predic-
tor relationships were not changing over time [4, 8, 11, 
14]. Bayesian updating methods showed good predic-
tive performance and may produce smoother updates to 
model coefficients than refitting [3, 6, 8].

Once a prediction model has been updated, it becomes 
susceptible to performance deterioration again due to the 
evolution of treatments or the disease itself, changes to 
the affected population, repeated exposures, or the qual-
ity of the data available for its implementation. Rather 
than performing updates as a one-time or discrete 
update, a strategy for continued updating can combat 
this. A dynamic updating strategy refers to an approach 
for updating a model at multiple times in the future when 
new data becomes available [11, 15]. Although dynamic 
updating strategies offer many benefits, their use is still 
limited because of difficulties in implementing and 
resourcing such a strategy, obtaining the necessary data 
and communicating the frequent changes to a prediction 

model [3, 15]. Furthermore, the study of updating strate-
gies for time-to-event outcomes has been limited. Clini-
cal examples of updating survival models include the 
recalibration of Cox proportional hazards models used 
to predict 30-day survival and 6-month independence 
after acute stroke by Sim et al. [5] and the recalibration of 
Cox models used for predicting survival after a particu-
lar treatment for hepatocellular carcinoma by Cucchetti 
et al. [16].

In this study, our primary aim is to assess methods for 
dynamic model updating of clinical survival prediction 
models. We were motivated by the COVID-19 pandemic 
where mortality rates changed over time and new vac-
cines were introduced to the population. The “Motivating 
example: a COVID-19 clinical prediction model”  sec-
tion provides background on the illustrative example, 
the QCOVID series of survival prediction models [17, 
18]. We investigate both one-time and dynamic updat-
ing using recalibration, refitting and Bayesian dynamic 
updating of time-to-event models. We consider data 
sources where updated data is additional follow-up time 
on the same individuals and also where updated data 
refers to data from a new cohort of individuals. These 
methods are described in the “Methods for model updat-
ing and assessment” section. We use a simulation study, 
presented in the “Simulation study”  section, to investi-
gate the performance of multiple updating methods with 
a focus on calibration, discrimination and variability of 
hazard ratio estimates to evaluate the performance. In the 
“Updating a COVID-19 clinical prediction model”  sec-
tion, we illustrate these methods using the QResearch 
database of electronic health care patient data [19] to pre-
dict the risk of contracting and dying from COVID-19. 
We finish with a discussion in the “Discussion” section.

Motivating example: a COVID‑19 clinical prediction 
model
Since the beginning of the COVID-19 pandemic in early 
2020, numerous clinical prediction models have been 
proposed to assist both clinical decision-making and pol-
icymakers [20]. Among them, the QCOVID series of risk 
prediction algorithms were developed to help identify 
those most at risk of getting infected and then dying due 
to COVID-19 based on individual characteristics such as 
age, sex and long-standing illnesses [17, 18]. The original 
QCOVID model was used to prioritise people for vacci-
nation and to inform the government’s shielding list [17]. 
It was later refit with data from the second pandemic 
wave in the UK (QCOVID2) and extended to account for 
COVID-19 vaccination (QCOVID3) [18]. These mod-
els were developed in a rapidly changing environment in 
terms of the availability of vaccines, infection prevalence, 
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levels of immunity in the population, new variants and 
availability of treatments.

Motivated by the need to keep prediction models such 
as QCOVID up to date to provide accurate predictions 
of risk, we apply different updating strategies to a model 
for prediction of the risk of catching and dying from 
COVID-19 (details found in the “Methods”  section). 
We use a subset of QResearch data, the same database 
used to develop the QCOVID models. QResearch is an 
anonymised database of health records from GP prac-
tices throughout the UK that contains historical and cur-
rent information on over 35 million individuals [19].

Methods for model updating and assessment
Dynamic model updating
Dynamic model updating is a process whereby a predic-
tion model is repeatedly updated with new information. 
The process begins during period u = 0 with an original 
model M0 fit using a development dataset D0 . Dataset 
D0 contains information from time t−1 through time t0 . 
After time t0 , new information becomes available during 
period u = 1. This new data can be collected to form data-
set D1 which contains information from ( t0 , t1 ]. The time 
period between updates may be fixed or variable and may 
be as short as the time it takes to receive one new data 
point or based on a fixed passage of time, e.g. 1 month, 1 
quarter or 1 year. Using this new dataset, D1 , out-of-sam-
ple survival predictions are made at a clinically relevant 
prediction horizon, v, using model M0 , and performance 
is measured (see the “Performance assessment” section). 
Model M0 is then updated with the information in D1 
and the process repeats. New data is collected Du , pre-
dictions are made using the model Mu−1 , performance is 
measured and, finally, model Mu−1 is updated with data 
Du resulting in model Mu.

Performance assessment
The predictive performance of the original and updated 
models can be assessed on out-of-sample predictions by 
discrimination, calibration and overall performance [1, 
21]. In time-to-event modelling, given a pair of individu-
als with known survival times, discrimination refers to 
the model’s ability to assign a greater survival probabil-
ity to the one who survived longer. We use an inverse 
probability of censoring weighted (IPCW) C-index to 
account for censoring [22]. Calibration assesses how well 
predicted outcomes match observed outcomes and we 
measure weak calibration using calibration intercept and 
slope [21, 23–25]. We use an IPCW Brier score, which 
is the mean-squared error for binary outcomes and pre-
dictions that are probabilities, to measure overall perfor-
mance [26].

Methods for model updating
In this section, we review three clinical prediction model 
updating methods: intercept recalibration, refitting and 
Bayesian updating and discuss their use in the context 
of updating a survival prediction model. We will use 
the term “no updating” to refer to retaining the origi-
nal model ( M0 ) without using new data to update it. We 
assume the original model to be updated is a Cox propor-
tional hazards model [27], which can be written as:

where hi(t | Xi) is the hazard for the individual i at time 
t, h0(t) is the baseline hazard, Xi is a vector of time-fixed 
covariates and β is a vector of parameters to be estimated 
(the log hazard ratios). An estimate of the predicted sur-
vival probability for person i can be computed using:

where Ĥ0(t) is Breslow’s estimate of the cumulative base-
line hazard [28]. Note that with each update, we reset the 
time t to t = 0 to compute the survival probabilities.

Intercept recalibration
For a Cox proportional hazards model, recalibration of 
the intercept refers to re-estimating the baseline hazard 
using the new data while holding the log hazard ratios 
estimated on the original dataset, β̂ , constant. In period 
u, we first calculate the linear predictor, ηi,u , for the new 
data using β̂ from the original model and covariates Xi,u 
from the new data. A Cox model is fit with ηi,u = β̂TXi,u 
as the only covariate and its coefficient βη is fixed at 1. 
We then estimate the cumulative baseline hazard H0,u(t) 
at the prediction horizon by setting the value of the linear 
predictor to zero. Recalibrated survival predictions are 
computed on the new data as:

Because the predictor coefficients are not updated, 
recalibration will only affect model performance in 
terms of calibration; discrimination will not change. This 
method does not accommodate the addition of new pre-
dictors to the model.

Refitting
Refitting is the most extreme type of updating because 
the previously estimated predictor coefficients and base-
line hazard are discarded. Therefore, it readily accom-
modates new predictors. In general, a model could be 
updated by refitting to new data only or to some combi-
nation of old and new data [3, 11]. An advantage of refit-
ting to new data only is that the updated model more 

(1)hi(t | Xi) = h0(t)exp(β
TXi)

(2)Si(t | Xi) = exp −Ĥ0(t)exp(β̂
T
Xi)

(3)Si,u(t | Xi,u) = exp
{

−Ĥ0,u(t)exp(ηi,u)
}
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quickly reflects the new environment but the update may 
be made on a smaller sample size than the original model 
development dataset [9]. Also, if the new data reflects a 
temporary change in the data generating process or con-
tains data from only a particular segment of the popula-
tion, the updated model may be overfit to this new data 
and future performance may be poor [29].

Bayesian dynamic updating
Bayesian model updating is a technique for combining 
knowledge gained in previous models with information 
in the new data that arises as time goes on and that is 
available for making an update to the model. Applying 
the Bayesian updating technique of McCormick et  al. 
[30], which focused on a logistic outcome model, to pro-
portional hazards regression and assuming exponentially 
distributed survival times, the model in period u for 
u ≥ 1 can be written:

where Ti is an individual i’s survival time and �u is the 
log baseline hazard in period u. β̂u−1 is the vector of 
coefficient estimates from the prior period, �̂u−1 is the 
covariance matrix from the prior period and ξ ≤ 1 is 
a ‘forgetting factor’. The forgetting factor controls the 
level of uncertainty in the prior; a smaller ξ yields a less 
informative prior. σ� was chosen to yield a vague prior. 
Other distributions of survival times may be used, e.g. 
Weibull. For further details, see Additional file 1: Appen-
dix A. Survival predictions can be generated from the 
posterior predictive distribution. Parameter estimates are 
taken as the median of the posterior distribution.

Simulation study
Design
Overview and aims
The goal of this simulation study is to assess methods for 
dynamic model updating of clinical survival prediction 
models in changing environments. Specifically, we aim 
to identify settings where specific methods outperform 
others and explore how different types of observational 
datasets affect the performance of the updating methods. 
We consider cohort with replacement datasets, where the 
initial cohort is determined at the start of the study but 
individuals who have an event are replaced in the cohort 
with a new member, as well as new cohorts datasets, in 
which membership will change each period based on 
receiving a particular treatment or diagnosis. The simu-
lation scenarios are inspired by our motivating example 

(4)

Ti ∼ Exp(ωi)

ωi = �u + βT
u Xi

βu ∼ N (β̂u−1, �̂u−1/ξ)

�u ∼ N (0, σ�)

and thus are characterised by low event rates, predictors 
with low prevalence in the population, introduction of 
new treatments and changing baseline risk.

Data generating mechanisms
Because the goal is to study the process of updating a 
previously developed ‘original’ prediction model, we 
first generated data D0 and fit a model M0 to serve as 
the starting point. For each individual, 4 covariates 
were generated: a variable representing age in decades, 
X1 ∼ U(1.8, 9.5) ; a continuous risk factor (e.g. represent-
ing a biomarker), X2 ∼ N (1, 1) ; a binary risk factor (e.g. a 
co-morbidity indicator), X3 ∼ Bern(pX3) ; and a treatment 
variable, X4 ∼ Bern(pX4 ) . pX3 and pX4 vary by scenario 
and, in some cases, depend on age and on each other. 
A complete list of parameter values used in the simula-
tion can be found in Additional file 1: Table S1. Given log 
hazard ratios β1,β2,β3,β4 , we generated survival times 
assuming an exponential distribution with baseline haz-
ard e� . Survival times were censored at 1 year. A Cox pro-
portional hazards model was then fit to this dataset to 
create the original model.

We then simulated new data D1, . . . ,D5 , i.e. data arriv-
ing in 5 time periods, each of length 3 months, after 
development of the original model. The Du(u = 1, . . . , 5) 
were generated according to two frameworks which we 
refer to as: cohort with replacement and new cohorts. 
Each Du contains data for 3 months. In the cohort with 
replacement framework, follow-up time is added to the 
existing individuals in D1 each month and a small num-
ber of new individuals is added to replace those who have 
had events. We reset time to zero at the start of each 
quarter. This data generation method aims to mimic the 
use of electronic health records to assemble a cohort to 
study the risk of catching an infectious disease and hav-
ing a related adverse event. There is some churn as new 
individuals can join the cohort, e.g. new patients in a GP 
practice.

In contrast, in the new cohorts framework, data are 
simulated for a new (different) group of individuals each 
month as might be the case if the data source was all indi-
viduals with a positive COVID-19 test in that month. 
Individuals in the first month of the 3-month period are 
followed for 3 months, while individuals in the second 
and third months of the period are only followed for 2 
and 1 month, respectively. Many individuals are followed 
up for less time than the prediction horizon (3 months) 
yielding data with relatively fewer observations at longer 
times, and, therefore, fewer observed events. Figure  1 
illustrates sample follow-up times for individuals under 
cohort with replacement (left) and new cohorts (right). 
Further details of the data generation for both styles are 
found in Additional file 1: Appendix B and Fig. S1.
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For both data-generating mechanisms, 6 scenarios 
were studied. Table  1 provides a complete list and the 
associated parameter values for each scenario can be 
found in Additional file  1: Table  S1. For each scenario 
and for both frameworks, we generated nsim = 600 sim-
ulated datasets each with 10,000 individuals for initial 
model development. The chosen sample size of 10,000 
was determined to be a sufficient size for the develop-
ment of the prediction model [31]. Each updating cohort 
for cohort with replacement consisted of data on 10,000 

individuals + 1000 replacements per simulated dataset 
per simulation scenario. Data on 1000 individuals per 
month were generated for the new cohorts framework 
per simulated dataset per scenario. In the reference sce-
nario, there were no changes over time. Calibration drift 
scenarios were characterised by a new baseline hazard in 
each updated dataset reflecting changes in baseline risk 
over time. In the “Rare-1%” scenario, we assumed 1% of 
the total population has a rare risk factor placing them at 
increased risk of an event and the chance of having this 

Fig. 1  Sample follow-up times for 18 simulated individuals under cohort with replacement (left) and new cohorts (right) frameworks. On the left, 
most individuals are part of the Q1, Q2 and Q3 cohorts. When an individual has an event (e.g. individual 9 at time 5.7 months), they are replaced 
by a new person at the start of the following month (e.g. individual 10). On the right, each quarterly dataset consists of different individuals 
and those joining the new cohort after the first month of the quarter have a shorter follow-up time. For example, individuals 5 and 6 join 
at the beginning of month 3 and are followed up for one month or until an event occurs

Table 1  Listing of all simulation scenarios and the abbreviated name used in the “Results” section

Group Description Scenario name

Reference scenario

Constant baseline hazard; event rate 5% per year Constant events

Scenarios with calibration drift

Decreasing baseline hazard; event rate decreased from 5% per year in the first period 
to 2% in the last period

Decreasing events

Increasing baseline hazard; event rate increased from 5% per year in the first period 
to 8% in the last period

Increasing events

Scenario with rare predictor

Rare risk factor for an event found in 1% of people over age 55 Rare-1%

Scenarios with new predictors

Treatment introduced in Q2, made available by age group New treatment

Treatment introduced in Q2, made available by age group and to those with a comor‑
bidity (5% of population)

New treatment + comorbidity
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risk factor increased with age. In the context of our moti-
vating example, this could correspond to an age-related 
comorbidity such as dementia. The treatment indica-
tor, X4 , was a time-varying binary predictor. To simu-
late the roll-out of a new treatment, such as a vaccine, 
pX4 , the probability of being treated, was increased over 
time so that an increasingly large segment of the popula-
tion received treatment. Drawing from the rollout of the 
COVID-19 vaccine in the UK, the population eligible for 
treatment was based on age with treatment being avail-
able to the elderly first and then to successively younger 
people. In the “new treatment + comorbidity” scenario, 
the treatment was made available to those who were 
immunocompromised ( X3 = 1) or met the minimum age 
criterion ( X1).

Targets
The target is the predicted probability of survival to 3 
months in the validation data Du+1 using a model fit/
updated with data from the previous period, Du.

Methods
In each simulation scenario, we fit a Cox proportional 
hazards model (“original model”) to the initial develop-
ment dataset. This model, M0 , is the starting point for all 
updating methods.

Four strategies, implemented at a single point in time 
and/or dynamically, were considered for updating the 
original model over the subsequent 1 year: (1) no update, 
(2a) refit once at a single time, (2b) refit quarterly, (3a) 
recalibrate the intercept once at a single time, (3b) recali-
brate the intercept quarterly and (4) Bayesian dynamic 
updating quarterly. In the no update strategy, the original 
model was retained unchanged and applied to each data-
set. The Bayesian model assumed an exponential base-
line hazard. For refit quarterly, recalibrate quarterly and 

Bayesian update quarterly, the updates are performed 
dynamically each quarter as new data arrives.

The original model was updated with new data per each 
updating strategy. Each updated model was then used to 
predict 3-month survival on the subsequent quarter’s 
data (Q2 - Q5) for evaluation (Fig.  2). In this way, we 
evaluate predictive performance out-of-sample. We used 
a quarterly updating cycle to mimic the situation where 
data becomes available for analysts on a quarterly cycle. 
Note that to fit a model for prediction of 3-month sur-
vival, 3 months of follow-up on at least a portion of the 
new dataset is required.

In addition to these dynamic strategies with quarterly 
updating, we also investigate one-time model updat-
ing that is not performed according to a pre-determined 
schedule. Model updating on an ad hoc basis when there 
are resources available or when the model starts perform-
ing poorly is common in practice. To simulate this, we 
imagine 7 different analysts faced with the task of updat-
ing the original model one time and having to choose 
when to do that update. We assume 4 of them select 
the start of a quarter while the remaining 3 select times 
in between those quarters (drawn randomly); therefore, 
the analysts will update with 3 months of data beginning 
at t = 0.0, 0.1, 0.25, 0.46, 0.5, 0.69 and 0.75 months after 
the start of year 1. Analysts who begin their update in the 
middle of a month only have access to the prior 3 months 
of data as we assume data is collected at the end of the 
month.

Performance measures
The predictive performance of the updating methods was 
evaluated using calibration intercept and slope, C-index 
and Brier score as described in the “Performance assess-
ment”  section. We also compare the estimated hazard 
ratios to the true values used to generate the data.

Fig. 2  Illustration of the dynamic updating and evaluation process. Beginning at the top left, an original model was fit to the development dataset 
and evaluated out-of-sample on the Q1 new data. The model was then updated each quarter with new data and evaluated on the subsequent 
quarter’s data. These updates are called Update 1, 2, 3 and 4 where update u was performed using data from Quarter u. A colour version of this 
figure can be found in the electronic version of the article



Page 7 of 14Tanner et al. Diagnostic and Prognostic Research            (2023) 7:24 	

Implementation
All analyses were conducted in R v4.0.2 [32]. Survival 
times were generated using the R package simsurv 
[33]. We used the survival package [34] for Cox pro-
portional hazards regression and the pec package [35] 
to calculate C-index and Brier score. Calibration inter-
cept and slope (“weak calibration” [36]) were computed 
using the method described by Crowson et al. [24].

Bayesian survival analysis was performed using the 
rstanarm package [37]. Estimation was via Markov 
chain Monte Carlo, specifically the No-U-Turn Sam-
pler (Hamiltonian Monte Carlo) implemented in Stan 
[38]. We used 2 chains, each with 7500 iterations of 
which 1000 were burn-in. This was sufficient to obtain 
an effective sample size of 10,000 and a Monte Carlo 
standard error ≈ 1% of standard error of the param-
eter estimates. Convergence was assessed using Gel-
man and Rubin’s Rhat statistic [39] with an Rhat < 1.1 
required for convergence. For coefficients not present 
in the original model (e.g. new treatment) and the 
rate parameter � , we set a prior distribution of N(0, 
2.5); all other prior distributions were obtained as 
described in the “Bayesian dynamic updating” section. 
Typical forgetting factors are just below 1 (e.g. Raft-
ery et  al. [40] chose ξ = 0.99). McCormick et  al. [30] 
advise that while less volatile processes may be well-
represented by 0.99 < ξ < 1 , more volatile ones may 
require 0.90 < ξ < 1 . We found that performance was 
not sensitive to the choice of forgetting factor between 
0.50 and 0.99 so we used ξ = 0.9 (see Additional file  1: 
Appendix D, Table  S8 for a sensitivity analysis of the 
forgetting factor). If the model could not be refit due to 
insufficient events/covariate combinations, we retained 
the model from the previous period to reflect the real-
ity that sometimes it is not possible to refit a model 
until more data is accrued.

Results
In the reference scenario with a constant event rate, all 
methods showed similar discriminative ability (C-index). 
For calibration intercept and slope (target values of 0 
and 1, respectively), results from the updating methods 
deviated more from the target values than those from no 
updating. Complete results are available in Additional 
file 1: Table S2 and Fig. S2.

Scenarios with calibration drift (decreasing events, increasing 
events)
Discrimination and calibration intercept for the simula-
tion using a decreasing event rate scenario are presented 
in Fig.  3. Complete results for the calibration drift sce-
narios can be found in Additional file  1: Tables S3, S4, 
Figs. S3, S4. For the cohort with replacement simula-
tions, in both the increasing and decreasing event rate 
scenarios, all updating methods (including not updating) 
produced similar average C-index, Brier score and cali-
bration slope. The average C-index for all methods in the 
final period was 0.81. Higher values of the C-index indi-
cate better discriminative ability. Although none of the 
calibration slopes deviated by more than 0.02 from 1.0, 
the value of the calibration intercept for a model that 
was not updated moved further away from zero at each 
prediction time (see Fig. 3). In the decreasing event rate 
scenario, updating via quarterly Bayesian dynamic updat-
ing had the best calibration intercepts but other updating 
methods were within 0.02 of those values. Best calibra-
tion in the increasing event rate scenario was achieved 
by the quarterly recalibration strategy and, again, other 
updating methods were close. Models that were recali-
brated or refit only once exhibited good calibration at 
some time points but, overall, quarterly updating strate-
gies produced calibration intercepts closer to 0. Results 
for the new cohorts simulations followed a similar pattern 

Fig. 3  Cohort with replacement simulation results for a scenario with calibration drift. The left graphic shows the average C-index for each updating 
method across the 600 simulated datasets at each of the 5 prediction times for a scenario where the event rate decreased over time from 5% 
per year in Q1 to 2% per year in Q5. On the right, the average calibration intercept is shown for the same scenario. Results for ‘Recal once’ and ‘Refit 
once’ strategies are ordered by update time with the earliest time on the left
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but more variability was seen in the estimates of calibra-
tion slope from all methods.

Scenario with rare predictor (Rare‑1%)
Predictive performance results for the rare predictor sce-
nario, where 1% of the population had a risk factor for the 
event and the chance of having the risk factor increased 
with age are in Additional file  1: Table  S5, Figs. S5, S6. 
In both simulated dataset styles, cohort with replace-
ment and new cohorts, all updating methods, including 
no updating, performed similarly for calibration inter-
cept, C-index and Brier score. In the new cohorts simula-
tion, the calibration slope of quarterly refitting was 0.94 
and 0.95 in the last two quarters compared to 0.99 and 
0.99 for the other methods. Differences were also seen 
in the hazard ratio estimates (see the “Hazard ratio esti-
mates” section below).

Scenarios with new predictors (new treatment, new 
treatment + comorbidity)
Full simulation results for the two scenarios with new 
predictors can be found in Additional file  1: Tables S6, 
S7, Figs. S7, S8. In these scenarios, a new treatment was 
introduced at the beginning of Q2 and rolled out to an 
increasing percentage of the population over time based 
on age group (“New treatment”) or based on age and 
presence of a comorbidity (“New treatment + comor-
bidity”). In the new treatment cohort with replacement 
simulation, Bayesian updating, refitting quarterly and 
one-time refitting after the introduction of the new treat-
ment offered the best calibration intercept and refitting 
strategies had the best calibration slope. Recalibration 
strategies generally had a calibration intercept closer to 
zero than no updating. All methods had a similar Brier 
score. Refitting and Bayesian updating strategies showed 
improvements in discrimination over no updating or 

recalibration strategies with differences in average 
C-index from 0.03 to 0.07 over no updating in the Q3–
Q5 predictions. In the new cohorts simulation, quarterly 
refitting and Bayesian updating offered calibration inter-
cepts ranging from − 0.02 to 0.02 in Q3–Q5 compared 
to − 0.58 to − 1.18 for no update and − 0.25 to − 0.33 for 
quarterly recalibration (see Fig.  4). Bayesian updating 
produced superior discrimination, with a C-index sig-
nificantly higher than all other methods in Q3–Q5 (Wil-
coxon signed rank test p <0.001).

Similar to the new treatment scenario, in the cohort 
with replacement simulation under the new treatment + 
comorbidity scenario, Bayesian updating, quarterly refit-
ting and refitting after the introduction of the treatment 
produced the best calibration intercepts. Brier scores 
were similar for all updating methods. Bayesian updat-
ing and quarterly refitting produced the best average 
C-index values (0.82, 0.79, 0.76, 0.76) for the four updates 
compared to (0.82, 0.79, 0.74, 0.72) for no updating and 
quarterly recalibration. In the new cohorts simulation, 
Bayesian updating had the calibration intercept closest to 
zero after the introduction of the new treatment (− 0.04, 
− 0.01, 0.02). Quarterly recalibration produced better cal-
ibration intercepts (− 0.29, − 0.55, − 0.18) than refitting 
(− 0.45, − 0.85, − 0.76) due to the inability of the model 
to be refit on some datasets. The highest average C-index 
came from Bayesian dynamic updating (0.83, 0.83, 0.81, 
0.83) (Wilcoxon signed rank test p < 0.05 in Q3–Q5).

As there are small numbers of individuals with the 
comorbidity who also received the new treatment, in the 
new cohorts datasets it was not always possible to refit 
the model at each time point: 5% (Q2), 25% (Q3) and 32% 
(Q4) of models were able to be refit from the 600 simu-
lated datasets. These percentages were higher for cohort 
with replacement datasets: 97% (Q2), 99.5% (Q3) and 
65% (Q4). The percentage of simulated data sets in which 

Fig. 4  New cohorts simulation results for the new treatment scenario. The left graphic shows the average C-index for each updating method 
across the 600 simulated datasets at each of the 5 prediction times for the scenario where a new treatment was introduced at the beginning 
of Q2. On the right, the average calibration intercept is shown for the same scenario. Results for ‘Recal once’ and ‘Refit once’ strategies are ordered 
by update time with the earliest time on the left
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refitting was feasible rises over time in the new cohorts 
datasets as more people are eligible for the treatment 
and, therefore, it is more likely that there are individu-
als with the comorbidity who are both treated and have 
an event. In the cohort with replacement, however, the 
percentage able to be fit in Q4 is lower than the previous 
quarters because there are very few people who have the 
comorbidity and are still untreated and even fewer who 
also have an event.

Hazard ratio estimates
While predictive performance is not measured based on 
estimates of the parameters of prediction models, (their 
magnitude or their precision), in the dynamic updating 
setting users may be interested in the how parameter esti-
mates change after updating. Changes in underlying haz-
ard ratios over time are likely to be reflected in changes 
in predictive performance and in an updated model 
providing improved predictive performance. Users of 
the model will expect a smooth time series of hazard 
ratio estimates as predictor-outcome relationships are 
generally not rapidly changing. In this simulation study, 
across all scenarios, the hazard ratio estimates obtained 
with refitting strategies showed more variability at each 
update and across time than those obtained by Bayes-
ian dynamic updating. For example, in the decreasing 
events scenario, Bayesian dynamic updating log hazard 
ratio estimates for all three predictors ( β1,β2,β3 ) showed 
less volatility between time points than refitting strate-
gies. Further, Bayesian updating produced log hazard 
ratio estimates with less bias than the refitting strategies 
(Fig. 5). Note that hazard ratios are not updated by inter-
cept recalibration.

Looking at the coefficient estimates in the cohort with 
replacement simulation for the rare predictor ( β3 ) in 
the rare-1% scenario, the average of the original model 
estimates for the log hazard ratio was 0.76 (MCSE 0.01) 
compared to the true value of 0.8. The average estimated 
log hazard ratio for Bayesian updating after each of the 4 
updates was 0.78, 0.79, 0.80, 0.81 with an MCSE of 0.01 
at each time. The refitting strategies showed more vari-
ability in the estimates of the log hazard ratio with MCSE 
of 0.02 at each time and more bias, with log hazard ratio 
estimates of 0.73, 0.73, 0.75, 0.73 at the 4 update times 
(see Additional file 1: Fig. S6).

Updating a COVID‑19 clinical prediction model
Methods
To fit and evaluate a COVID-19 survival prediction 
model, data on 1,000,000 individuals aged 18 years 
or older were obtained from the QResearch database 
(version 46) for the period 24/01/2020 (the first date 
where cases were reported in the UK) to 30/04/2021. 
For consistency with Hippisley-Cox et  al. [18], our 
chosen outcome was predicted 70-day survival from 
COVID-19-related death as determined by death cer-
tificate information or death within 28 days of a posi-
tive COVID-19 test. Predictors for each individual 
were: age, body mass index (BMI), sex, type 1 diabe-
tes, chronic obstructive pulmonary disease (COPD), 
dementia, and UK region. While this represents a sub-
set of the predictors used in the QCOVID models [17, 
18], our purpose was not to develop a new COVID-19 
prediction model, nor to update an existing one with 
all their complexities but rather to illustrate methods 
for model updating. Non-COVID-19-related deaths 

Fig. 5  Cohort with replacement simulation results for the decreasing events scenario. From left to right, the graphics show the estimated log 
hazard ratios for β1,β2,β3 for the original model, Bayesian updating and the refitting strategies. Intercept recalibration strategies are not shown 
because hazard ratios are not re-estimated
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represent a competing risk. Therefore, we fit a sub-
distribution hazard model where everyone not experi-
encing a COVID-19 death, (including those who died 
of other causes) was censored at the end of the study 
period [41]. As 18% of baseline BMI values were miss-
ing, we added a missing indicator to the model. Both 
BMI and age were scaled to have a mean of 0 and a 
standard deviation of 1 and then a natural cubic spline 
was fitted to each with 3 internal knots. These knots 
were fixed throughout the updating so that previ-
ous model estimates would be valid priors for subse-
quent models. Additionally, 7-day rolling COVID-19 
case rates by region were included as a predictor [42] 
beginning with the first update. We divided the study 
period into 5 batches of data to create one development 
dataset followed by four updating datasets as follows: 
Period 1 (24 Jan–30 Apr 2020), Period 2 (1 May–31 Jul 
2020), Period 3 (1 Aug–31 Oct 2020), Period 4 (1 Nov 
2020–31 Jan 2021) and Period 5 (1 Feb–30 Apr 2021). 
An initial sub-distribution hazard model with main 
effects only was fit to the period 1 dataset with base-
line characteristics measured up to the study period 
start date of 24 January 2020 and follow-up continuing 
through 30 April 2020. Each subsequent dataset con-
tained information on co-morbidities and regional case 
rates updated up to the period start date with follow-up 
continuing up to the end date of the period.

Intercept recalibration, refitting and Bayesian updat-
ing were applied to each updating dataset in succes-
sion. The resulting updated prediction models were 
evaluated out-of-sample on the next period’s data for 
discrimination, calibration and overall predictive per-
formance. For comparison, the original model (without 
updating) was also evaluated on each updating dataset. 

Both intercept recalibration and refitting used a pro-
portional hazards model. Bayesian models using a con-
stant baseline hazard were estimated using Stan [43]. 
We used 6 chains, each with 3000 iterations of which 
1000 were burn-in to obtain a Monte Carlo standard 
error approximately less than or equal to 1% of the 
standard error of the parameter estimates. The effective 
sample size was at least 5000 and Gelman and Rubin’s 
Rhat statistic [39] was < 1.01 indicating convergence. 
The forgetting factor was 0.9.

Results
Additional file  1: Table  S9 presents baseline charac-
teristics of the study population. Table 2 presents per-
formance characteristics for each updating method 
(recalibrate, refit and Bayesian update) and for the 
original model without any updating. No single updat-
ing method gave the best performance across all peri-
ods in any of the performance metrics. While refitting 
produced a higher C-index (0.93) than not updating 
(0.92) for the first evaluation time, at the second evalu-
ation time refitting had a lower C-index (0.91) than 
both Bayesian updating (0.92) and no updating (0.94). 
Refitting was equal to no updating and recalibration 
(0.91) at the final evaluation time and higher than 
Bayesian updating (0.90). The C-index for the model 
after the first Bayesian update (0.76) was the lowest of 
any method at any time. The Brier scores for all meth-
ods in all periods were < 0.001. Calibration intercepts 
from Bayesian updating and refitting were closest to 0 
for updates using period 2 and 3 data but the original 
model, without being updated, showed the best calibra-
tion intercept in the final updating period.

Table 2  Performance of intercept recalibration (Recal), refitting (Refit), and Bayesian dynamic updating (Bayes) methods to update 
the prediction model for 70-day COVID-19-related death. The original model was fit using data from period 1 and evaluated using data 
from period 2. The original model was then updated each period with new data and evaluated using the following period’s data

† No update refers to the original model fit in period 1 and evaluated in each subsequent period without any updating

Model fit w/ Evaluated w/ Recal Refit Bayes No Recal Refit Bayes No
data from: data from: update† update†

C-index Brier Score

Period 1 Period 2 0.95 3E−04

Period 2 Period 3 0.92 0.93 0.76 0.92 3E−05 3E−05 3E−05 3E−05

Period 3 Period 4 0.94 0.91 0.92 0.94 8E−04 7E−04 8E−04 7E−04

Period 4 Period 5 0.91 0.91 0.90 0.91 4E−04 4E−04 4E−04 4E−04

Calibration intercept Calibration slope

Period 1 Period 2  − 0.82 1.10

Period 2 Period 3 -0.79 0.30 0.15  − 2.12 0.92 0.82 0.86 0.92

Period 3 Period 4 3.16  − 0.04  − 0.01 0.56 0.93 0.90 0.86 0.93

Period 4 Period 5  − 0.66  − 1.10  − 1.12  − 0.49 0.85 0.89 0.88 0.85
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Discussion
In this study, we investigated the performance of discrete 
and dynamic updating methods for clinical survival pre-
diction models. Overall, the dynamic updating strategies 
at regular intervals outperformed a single update. We 
found that Bayesian dynamic updating offered the best 
performance in the simulation study in  situations with 
new predictors and less data and that all methods gen-
erally improved calibration. In our motivating example, 
where the environment was changing rapidly and the 
outcome was rare, no single updating method outper-
formed the others.

Although no one method performed best in all circum-
stances, we can draw several conclusions from the study. 
First, intercept recalibration is an effective tool for cali-
bration maintenance that requires little data, is not com-
putationally intensive and will not change the rank order 
of predicted survival probabilities between two individu-
als. This simplifies reporting of the updated model and 
may be less confusing for users. Recalibration may also 
be useful when new predictors are introduced but insuf-
ficient data has accumulated for a full model refit, as 
was seen in the new treatment + comorbidity scenario. 
Second, although refitting can produce a good perform-
ing model when adequate data is available, it does not 
outperform Bayesian updating in general, even when 
there are new predictors. As in the binary outcome set-
ting, because refitting requires a large number of obser-
vations/events and it may produce abruptly changing 
hazard ratio estimates over time, refit models have the 
greatest chance of being overfit and are the most likely 
to produce substantially different predictions for an indi-
vidual compared to the previous model. Riley et al. [12] 
caution that attempts to ameliorate this overfitting by 
applying shrinkage techniques may be unreliable due 
to estimation uncertainty of the tuning parameters and 
is best used with a larger sample size. In an unchanging 
environment, updating may lead to poorer performance 
than not updating, particularly if the sample size of the 
updating dataset is small.

Bayesian dynamic updating offers the advantages of 
both recalibration and refitting and, in the simulation 
study, was the best performer in the majority of scenar-
ios and time points across the evaluation criteria. How-
ever, it is the most computationally intensive updating 
method we studied with a single update taking 12–24 h 
using the QResearch dataset of 1,000,000 records. Also, 
the baseline hazard must be modelled parametrically. 
We selected an exponential parametrisation for ease of 
exposition and because over this short horizon, the base-
line hazard may be reasonably assumed to be constant. 
More flexible specifications may be chosen but will come 
with a higher computational cost. Although the detail 

of how a Bayesian model is estimated would be com-
plicated to explain to non-statisticians, we believe the 
concept of a Bayesian update — that it combines knowl-
edge from the current model with information from 
new data — is intuitively appealing. The relatively stable 
hazard ratio estimates are a further advantage and may 
help engender trust amongst users about the updating 
process. Although our simulation study found that per-
formance was insensitive to choice of the forgetting fac-
tor, in other situations this might not be the case and the 
forgetting parameter could be viewed as a quantity to be 
tuned. McCormick et al. [30] acknowledge the computa-
tional burden of tuning the forgetting factor and propose 
an approach where two values are considered at each 
update: forgetting and no-forgetting.

In the COVID-19 application, the discrimination of the 
first Bayesian updated model was poor. This was primar-
ily due to the method for obtaining the priors for the first 
update. The original model was fit using a Cox propor-
tional hazards model and the first priors were taken from 
this model. This mimics the situation where the analyst(s) 
updating the model are different from the analyst(s) who 
originally developed it and they may not have access to 
the original development dataset. In this case, the fit-
ted model is the only source of information for the pri-
ors. The poor performance in the first update occurred 
because the Bayesian updating assumed exponentially 
distributed survival times whereas the original model 
made no such assumption and, therefore, the coefficients 
were estimated with a different baseline hazard. Had the 
actual survival times been exponentially distributed (as 
in the simulation study) obtaining the priors from a Cox 
fit would have produced the same priors as those from 
an exponential model. We recommend care in obtaining 
priors when access to the development data is not pos-
sible. Also, more complex models of the baseline hazard 
could be used in the Bayesian model but these come with 
increased computational cost.

The results from the illustration of updating a model 
that predicts catching and dying from COVID-19 were 
inconclusive. Different updating strategies, including no 
updating, performed well at different times with differ-
ent metrics. During the study period, the UK experienced 
multiple waves of COVID-19. Therefore, a model updated 
during a time of high prevalence could be tested out-of-
sample at a time of low prevalence and good calibration 
was difficult to maintain. We hypothesise that a model 
predicting risk of COVID-19-related death in those with 
a positive COVID-19 test would be less susceptible to 
these cycles. Also, our example was constructed using a 
3-month updating period to ensure sufficient events in 
each dataset to allow for refitting. However, a monthly 
updating cycle using Bayesian dynamic updating may 
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have performed better. Interesting future work would be 
to update a COVID-19 prediction model including the 
period that saw the introduction of vaccines in the UK.

In the simulation study, refitting performed better in 
the cohort with replacement-style data scenarios than in 
those with new cohorts. This result is due to the smaller 
amount of data available in the new cohorts dataset and 
the fact that, in many cases, we were unable to fit a new 
model to the new data only. Analysts may consider using 
some combination of old and new data to overcome the 
lack of new data but how much old versus new data to 
include is subjective and the choice can impact the refit 
prediction model. Schnellinger et al. [11] studied 4 sliding 
window lengths for updating a logistic regression model 
and found that although the window length did not 
affect performance of recalibration techniques, includ-
ing more old data improved performance of refitting on 
most metrics. In both binary and time-to-event outcome 
settings, Bayesian dynamic updating is well-suited to the 
small sample size case as the model can be successively 
updated with new evidence without waiting for a data-
set as large as the original development dataset to accu-
mulate. The choice of how often to update is a question 
that will depend upon the availability of new data and the 
data requirements of the selected updating method. An 
interesting area for future research is how to adaptively 
determine when to update the prediction model. For 
example, an update could be triggered when one or more 
minimum performance thresholds were crossed such as 
C-index worsening by more than 5%. Alternatively, algo-
rithms may be implemented to detect changes in the 
underlying distribution of the data, called concept drift 
[29, 44]. In the clinical prediction model literature, Davis 
et al. [10] has proposed an adaptive windowing approach 
for detecting calibration drift that could be used to 
inform update timing.

We powered the simulation study to detect a difference 
of 0.01 in the C-index but it is difficult to know how big 
a difference in each of the performance criteria would 
be clinically significant. For example, we found evidence 
of statistically different values of the C-index and Brier 
score based on a Wilcoxon signed rank test even when 
the values themselves were identical to two significant 
digits. It is unlikely that these differences are relevant in 
a practical sense. Also, when event rates are very low, 
as in the COVID-19 application, Brier scores may not 
be informative for model comparison because all meth-
ods are likely to predict a low event probability for most 
individuals. When averaged, these small differences over-
whelm the few cases where predicted risk is higher and 
the resulting Brier scores will be small.

Although our focus was on time-to-event outcomes, 
many of our conclusions are applicable to the binary 

outcome case as well. In particular, the choice of updat-
ing method should be carefully selected considering 
the available data, existence of new predictors and 
subject matter knowledge. Equally important is the 
development of a strategy for ongoing dynamic updat-
ing including the recurring collection of new data to 
capture environment changes and distributional shifts. 
A plan for communicating the updated model and 
refreshing web pages and calculators is also required 
when implementing any dynamic strategy. We also wish 
to caution against over-automating the updating pro-
cess as clinical input may identify trends and environ-
mental changes before they are evident in the data.
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