148 research outputs found

    Buckling instability causes inertial thrust for spherical swimmers at all scales

    Full text link
    Microswimmers, and among them aspirant microrobots, generally have to cope with flows where viscous forces are dominant, characterized by a low Reynolds number (ReRe). This implies constraints on the possible sequences of body motion, which have to be nonreciprocal. Furthermore, the presence of a strong drag limits the range of resulting velocities. Here, we propose a swimming mechanism, which uses the buckling instability triggered by pressure waves to propel a spherical, hollow shell. With a macroscopic experimental model, we show that a net displacement is produced at all ReRe regimes. An optimal displacement caused by non-trivial history effects is reached at intermediate ReRe. We show that, due to the fast activation induced by the instability, this regime is reachable by microscopic shells. The rapid dynamics would also allow high frequency excitation with standard traveling ultrasonic waves. Scale considerations predict a swimming velocity of order 1 cm/s for a remote-controlled microrobot, a suitable value for biological applications such as drug delivery.Comment: To appear in Phys. Rev. Lett See demonstration movie on https://www.youtube.com/watch?v=cEXMsFwEqs

    Poisson approximations for the Ising model

    Full text link
    A dd-dimensional Ising model on a lattice torus is considered. As the size nn of the lattice tends to infinity, a Poisson approximation is given for the distribution of the number of copies in the lattice of any given local configuration, provided the magnetic field a=a(n)a=a(n) tends to −∞-\infty and the pair potential bb remains fixed. Using the Stein-Chen method, a bound is given for the total variation error in the ferromagnetic case.Comment: 25 pages, 1 figur

    Hydrodynamic lift of vesicles under shear flow in microgravity

    Full text link
    The dynamics of a vesicle suspension in a shear flow between parallel plates has been investigated under microgravity conditions, where vesicles are only submitted to hydrodynamic effects such as lift forces due to the presence of walls and drag forces. The temporal evolution of the spatial distribution of the vesicles has been recorded thanks to digital holographic microscopy, during parabolic flights and under normal gravity conditions. The collected data demonstrates that vesicles are pushed away from the walls with a lift velocity proportional to γ˙R3/z2\dot{\gamma} R^3/z^2 where γ˙\dot{\gamma} is the shear rate, RR the vesicle radius and zz its distance from the wall. This scaling as well as the dependence of the lift velocity upon vesicle aspect ratio are consistent with theoretical predictions by Olla [J. Phys. II France {\bf 7}, 1533--1540 (1997)].Comment: 6 pages, 8 figure

    Single File Diffusion enhancement in a fluctuating modulated 1D channel

    Full text link
    We show that the diffusion of a single file of particles moving in a fluctuating modulated 1D channel is enhanced with respect to the one in a bald pipe. This effect, induced by the fluctuations of the modulation, is favored by the incommensurability between the channel potential modulation and the moving file periodicity. This phenomenon could be of importance in order to optimize the critical current in superconductors, in particular in the case where mobile vortices move in 1D channels designed by adapted patterns of pinning sites.Comment: 4 pages, 4 figure

    Stationary shapes of deformable particles moving at low Reynolds numbers

    Full text link
    Lecture Notes of the Summer School ``Microswimmers -- From Single Particle Motion to Collective Behaviour'', organised by the DFG Priority Programme SPP 1726 (Forschungszentrum J{\"{u}}lich, 2015).Comment: Pages C7.1-16 of G. Gompper et al. (ed.), Microswimmers - From Single Particle Motion to Collective Behaviour, Lecture Notes of the DFG SPP 1726 Summer School 2015, Forschungszentrum J\"ulich GmbH, Schriften des Forschungszentrums J\"ulich, Reihe Key Technologies, Vol 110, ISBN 978-3-95806-083-

    On single file and less dense processes

    Full text link
    The diffusion process of N hard rods in a 1D interval of length L (--> inf) is studied using scaling arguments and an asymptotic analysis of the exact N-particle probability density function (PDF). In the class of such systems, the universal scaling law of the tagged particle's mean absolute displacement reads, ~ _{free}/n^mu, where _{free} is the result for a free particle in the studied system and n is the number of particles in the covered length. The exponent mu is given by, mu=1/(1+a), where a is associated with the particles' density law of the system, rho~rho_0*L^(-a), 0<= a <=1. The scaling law for leads to, ~rho_0^((a-1)/2) (_{free})^((1+a)/2), an equation that predicts a smooth interpolation between single file diffusion and free particle diffusion depending on the particles' density law, and holds for any underlying dynamics. In particular, ~t^((1+a)/2) for normal diffusion, with a Gaussian PDF in space for any value of a (deduced by a complementary analysis), and, ~t^((beta(1+a))/2), for anomalous diffusion in which the system's particles all have the same power-law waiting time PDF for individual events, psi~t^(-1-beta), 0<beta<1. Our analysis shows that the scaling ~t^(1/2) in a 'standard' single file is a direct result of the fixed particles' density condition imposed on the system, a=0

    Asteroids' physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution

    Full text link
    The larger number of models of asteroid shapes and their rotational states derived by the lightcurve inversion give us better insight into both the nature of individual objects and the whole asteroid population. With a larger statistical sample we can study the physical properties of asteroid populations, such as main-belt asteroids or individual asteroid families, in more detail. Shape models can also be used in combination with other types of observational data (IR, adaptive optics images, stellar occultations), e.g., to determine sizes and thermal properties. We use all available photometric data of asteroids to derive their physical models by the lightcurve inversion method and compare the observed pole latitude distributions of all asteroids with known convex shape models with the simulated pole latitude distributions. We used classical dense photometric lightcurves from several sources and sparse-in-time photometry from the U.S. Naval Observatory in Flagstaff, Catalina Sky Survey, and La Palma surveys (IAU codes 689, 703, 950) in the lightcurve inversion method to determine asteroid convex models and their rotational states. We also extended a simple dynamical model for the spin evolution of asteroids used in our previous paper. We present 119 new asteroid models derived from combined dense and sparse-in-time photometry. We discuss the reliability of asteroid shape models derived only from Catalina Sky Survey data (IAU code 703) and present 20 such models. By using different values for a scaling parameter cYORP (corresponds to the magnitude of the YORP momentum) in the dynamical model for the spin evolution and by comparing synthetics and observed pole-latitude distributions, we were able to constrain the typical values of the cYORP parameter as between 0.05 and 0.6.Comment: Accepted for publication in A&A, January 15, 201

    Noninferiority of Preservative-free Versus BAK-preserved Latanoprost-timolol Fixed Combination Eye Drops in Patients With Open-angle Glaucoma or Ocular Hypertension

    Get PDF
    Précis: Noninferiority of efficacy was demonstrated for a preservative-free latanoprost-timolol fixed combination compared with a BAK-containing formulation at 84 days after treatment in patients with open-angle glaucoma or ocular hypertension. Purpose: The purpose of this study was to compare the effect on intraocular pressure and safety of preservative-free latanoprost-timolol fixed combination (T2347) to benzalkonium chloride-preserved latanoprost-timolol fixed combination in patients with open-angle glaucoma or ocular hypertension. Methods: Phase III, randomized, parallel-group, investigator-masked study in 10 countries. A total of 242 patients aged 18 years or older with open-angle glaucoma or ocular hypertension in both eyes controlled with a preserved latanoprost-timolol fixed combination (15.7±2.4 mm Hg overall before inclusion) were randomized at day 0 with no washout period to receive the preservative-free alternative T2347 (N=127) or remain on the preserved comparator (N=115) for 84 days. Intraocular pressure changes from day 0 were measured at 9:00 am (±1 hour) on day 42 and day 84, and noninferiority of T2347 to the preserved comparator was analyzed statistically at day 84. Safety parameters were also reported. Results: The mean change in intraocular pressure from baseline to day 84 was -0.49±1.80 mm Hg for preservative-free T2347 and -0.49±2.25 mm Hg for the preserved comparator. These results met the noninferiority limits. Similar results were observed at day 42. There was no difference between groups in the incidence of adverse events or ocular signs. The total ocular symptoms score was better for T2347 than BPLT upon instillation at day 84 (45.9%/44.3%/9.8% of patients with improvement/no change/worsening vs. 33.6%/47.3%/19.1%; P=0.021), reflecting improvements in individual symptoms such as irritation/burning/stinging (P<0.001), and itching (P<0.01) on day 84. Conclusions: Preservative-free latanoprost-timolol fixed combination T2347 showed noninferior efficacy compared with the preserved comparator and was well tolerated

    Geodesics and the competition interface for the corner growth model

    Get PDF
    We study the directed last-passage percolation model on the planar square lattice with nearest-neighbor steps and general i.i.d. weights on the vertices, out- side of the class of exactly solvable models. Stationary cocycles are constructed for this percolation model from queueing fixed points. These cocycles serve as bound- ary conditions for stationary last-passage percolation, solve variational formulas that characterize limit shapes, and yield existence of Busemann functions in directions where the shape has some regularity. In a sequel to this paper the cocycles are used to prove results about semi-infinite geodesics and the competition interface

    The TP53 Arg72Pro and MDM2 309G>T polymorphisms are not associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Background: The TP53 pathway, in which TP53 and its negative regulator MDM2 are the central elements, has an important role in carcinogenesis, particularly in BRCA1- and BRCA2-mediated carcinogenesis. A single nucleotide polymorphism (SNP) in the promoter region of MDM2 (309T>G, rs2279744) and a coding SNP of TP53 (Arg72Pro, rs1042522) have been shown to be of functional significance. Methods: To investigate whether these SNPs modify breast cancer risk for BRCA1 and BRCA2 mutation carriers, we pooled genotype data on the TP53 Arg72Pro SNP in 7011 mutation carriers and on the MDM2 309T>G SNP in 2222 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Data were analysed using a Cox proportional hazards model within a retrospective likelihood framework. Results: No association was found between these SNPs and breast cancer risk for BRCA1 (TP53: per-allele hazard ratio (HR)=1.01, 95% confidence interval (CI): 0.93–1.10, Ptrend=0.77; MDM2: HR=0.96, 95%CI: 0.84–1.09, Ptrend=0.54) or for BRCA2 mutation carriers (TP53: HR=0.99, 95%CI: 0.87–1.12, Ptrend=0.83; MDM2: HR=0.98, 95%CI: 0.80–1.21, Ptrend=0.88). We also evaluated the potential combined effects of both SNPs on breast cancer risk, however, none of their combined genotypes showed any evidence of association. Conclusion: There was no evidence that TP53 Arg72Pro or MDM2 309T>G, either singly or in combination, influence breast cancer risk in BRCA1 or BRCA2 mutation carriers. O M Sinilnikova1,2, A C Antoniou3, J Simard4, S Healey5, M Léoné1, D Sinnett6,7, A B Spurdle5, J Beesley5, X Chen5, kConFab8, M H Greene9, J T Loud9, F Lejbkowicz10, G Rennert10, S Dishon10, I L Andrulis11,12, OCGN11, S M Domchek13, K L Nathanson13, S Manoukian14, P Radice15,16, I Konstantopoulou17, I Blanco18, A L Laborde19, M Durán20, A Osorio21, J Benitez21, U Hamann22, F B L Hogervorst23, T A M van Os24, H J P Gille25, HEBON23, S Peock3, M Cook3, C Luccarini26, D G Evans27, F Lalloo27, R Eeles28, G Pichert29, R Davidson30, T Cole31, J Cook32, J Paterson33, C Brewer34, EMBRACE3, D J Hughes35, I Coupier36,37, S Giraud1, F Coulet38, C Colas38, F Soubrier38, E Rouleau39, I Bièche39, R Lidereau39, L Demange40, C Nogues40, H T Lynch41, GEMO1,2,42, R K Schmutzler43, B Versmold43, C Engel44, A Meindl45, N Arnold46, C Sutter47, H Deissler48, D Schaefer49, U G Froster50, GC-HBOC43,44,45,46,47,48,49,50, K Aittomäki51, H Nevanlinna52, L McGuffog3, D F Easton3, G Chenevix-Trench5 and D Stoppa-Lyonnet42 on behalf of the Consortium of Investigators of Modifiers of BRCA1/
    • …
    corecore