3 research outputs found

    Pharmacokinetics and efficacy of orally administered acetaminophen (paracetamol) in adult horses with experimentally induced endotoxemia

    No full text
    Abstract Background Acetaminophen has been evaluated in horses for treatment of musculoskeletal pain but not as an antipyretic. Objectives To determine the pharmacokinetics and efficacy of acetaminophen compared to placebo and flunixin meglumine in adult horses with experimentally induced endotoxemia. Animals Eight university owned research horses with experimentally induced endotoxemia. Methods Randomized placebo controlled crossover study. Horses were treated with acetaminophen (30 mg/kg PO; APAP), flunixin meglumine (1.1 mg/kg, PO; FLU), and placebo (PO; PLAC) 2 hours after administration of LPS. Plasma APAP was analyzed via LC‐MS/MS. Serial CBC, lactate, serum amyloid A, heart rate and rectal temperature were evaluated. Serum IL‐1ÎČ, IL‐6, IL‐8, IL‐10, and TNF‐α were evaluated by an equine‐specific multiplex assay. Results Mean maximum plasma APAP concentration was 13.97 ± 2.74 Όg/mL within 0.6 ± 0.3 hour after administration. At 4 and 6 hours after treatment, both APAP (P = <.001, P = .03, respectively) and FLU (P = .0045 and P < .001, respectively) had a significantly greater decrease in rectal temperature compared to placebo. FLU caused greater heart rate reduction than APAP at 4 and 6 hours (P = .004 and P = .04), and PLAC at 4 hours (P = .05) after treatment. Conclusions and Clinical Importance The pharmacokinetics of acetaminophen in endotoxemic horses differ from those reported by previous studies in healthy horses. Acetaminophen is an option for antipyresis in clinical cases, particularly when administration of traditional NSAIDs is contraindicated

    Pulmonary Exposure to Magnéli Phase Titanium Suboxides Results in Significant Macrophage Abnormalities and Decreased Lung Function

    No full text
    Coal is one of the most abundant and economic sources for global energy production. However, the burning of coal is widely recognized as a significant contributor to atmospheric particulate matter linked to deleterious respiratory impacts. Recently, we have discovered that burning coal generates large quantities of otherwise rare Magnéli phase titanium suboxides from TiO2 minerals naturally present in coal. These nanoscale Magnéli phases are biologically active without photostimulation and toxic to airway epithelial cells in vitro and to zebrafish in vivo. Here, we sought to determine the clinical and physiological impact of pulmonary exposure to Magnéli phases using mice as mammalian model organisms. Mice were exposed to the most frequently found Magnéli phases, Ti6O11, at 100 parts per million (ppm) via intratracheal administration. Local and systemic titanium concentrations, lung pathology, and changes in airway mechanics were assessed. Additional mechanistic studies were conducted with primary bone marrow derived macrophages. Our results indicate that macrophages are the cell type most impacted by exposure to these nanoscale particles. Following phagocytosis, macrophages fail to properly eliminate Magnéli phases, resulting in increased oxidative stress, mitochondrial dysfunction, and ultimately apoptosis. In the lungs, these nanoparticles become concentrated in macrophages, resulting in a feedback loop of reactive oxygen species production, cell death, and the initiation of gene expression profiles consistent with lung injury within 6 weeks of exposure. Chronic exposure and accumulation of Magnéli phases ultimately results in significantly reduced lung function impacting airway resistance, compliance, and elastance. Together, these studies demonstrate that Magnéli phases are toxic in the mammalian airway and are likely a significant nanoscale environmental pollutant, especially in geographic regions where coal combustion is a major contributor to atmospheric particulate matter
    corecore