53 research outputs found

    West Africa International Centers of Excellence for Malaria Research: Drug Resistance Patterns to Artemether-Lumefantrine in Senegal, Mali, and The Gambia.

    Get PDF
    In 2006, artemether-lumefantrine (AL) became the first-line treatment of uncomplicated malaria in Senegal, Mali, and the Gambia. To monitor its efficacy, between August 2011 and November 2014, children with uncomplicated Plasmodium falciparum malaria were treated with AL and followed up for 42 days. A total of 463 subjects were enrolled in three sites (246 in Senegal, 97 in Mali, and 120 in Gambia). No early treatment failure was observed and malaria infection cleared in all patients by day 3. Polymerase chain reaction (PCR)-adjusted adequate clinical and parasitological response (ACPR) was 100% in Mali, and the Gambia, and 98.8% in Senegal. However, without PCR adjustment, ACPR was 89.4% overall; 91.5% in Mali, 98.8% in Senegal, and 64.3% in the Gambia (the lower value in the Gambia attributed to poor compliance of the full antimalarial course). However, pfmdr1 mutations were prevalent in Senegal and a decrease in parasite sensitivity to artesunate and lumefantrine (as measured by ex vivo drug assay) was observed at all sites. Recrudescent parasites did not show Kelch 13 (K13) mutations and AL remains highly efficacious in these west African sites

    A Randomised, Double-Blind, Controlled Vaccine Efficacy Trial of DNA/MVA ME-TRAP Against Malaria Infection in Gambian Adults

    Get PDF
    BACKGROUND: Many malaria vaccines are currently in development, although very few have been evaluated for efficacy in the field. Plasmodium falciparum multiple epitope (ME)– thrombospondin-related adhesion protein (TRAP) candidate vaccines are designed to potently induce effector T cells and so are a departure from earlier malaria vaccines evaluated in the field in terms of their mechanism of action. ME-TRAP vaccines encode a polyepitope string and the TRAP sporozoite antigen. Two vaccine vectors encoding ME-TRAP, plasmid DNA and modified vaccinia virus Ankara (MVA), when used sequentially in a prime-boost immunisation regime, induce high frequencies of effector T cells and partial protection, manifest as delay in time to parasitaemia, in a clinical challenge model. METHODS AND FINDINGS: A total of 372 Gambian men aged 15–45 y were randomised to receive either DNA ME-TRAP followed by MVA ME-TRAP or rabies vaccine (control). Of these men, 296 received three doses of vaccine timed to coincide with the beginning of the transmission season (141 in the DNA/MVA group and 155 in the rabies group) and were followed up. Volunteers were given sulphadoxine/pyrimethamine 2 wk before the final vaccination. Blood smears were collected weekly for 11 wk and whenever a volunteer developed symptoms compatible with malaria during the transmission season. The primary endpoint was time to first infection with asexual P. falciparum. Analysis was per protocol. DNA ME-TRAP and MVA ME-TRAP were safe and well-tolerated. Effector T cell responses to a non-vaccine strain of TRAP were 50-fold higher postvaccination in the malaria vaccine group than in the rabies vaccine group. Vaccine efficacy, adjusted for confounding factors, was 10.3% (95% confidence interval, −22% to +34%; p = 0.49). Incidence of malaria infection decreased with increasing age and was associated with ethnicity. CONCLUSIONS: DNA/MVA heterologous prime-boost vaccination is safe and highly immunogenic for effector T cell induction in a malaria-endemic area. But despite having produced a substantial reduction in liver-stage parasites in challenge studies of non-immune volunteers, this first generation T cell–inducing vaccine was ineffective at reducing the natural infection rate in semi-immune African adults

    Effect of 3 Days of Oral Azithromycin on Young Children With Acute Diarrhea in Low-Resource Settings A Randomized Clinical Trial

    Get PDF
    Importance: World Health Organization (WHO) guidelines do not recommend routine antibiotic use for children with acute watery diarrhea. However, recent studies suggest that a significant proportion of such episodes have a bacterial cause and are associated with mortality and growth impairment, especially among children at high risk of diarrhea-associated mortality. Expanding antibiotic use among dehydrated or undernourished children may reduce diarrhea-associated mortality and improve growth. Objective: To determine whether the addition of azithromycin to standard case management of acute nonbloody watery diarrhea for children aged 2 to 23 months who are dehydrated or undernourished could reduce mortality and improve linear growth. Design, Setting, and Participants: The Antibiotics for Children with Diarrhea (ABCD) trial was a multicountry, randomized, double-blind, clinical trial among 8266 high-risk children aged 2 to 23 months presenting with acute nonbloody diarrhea. Participants were recruited between July 1, 2017, and July 10, 2019, from 36 outpatient hospital departments or community health centers in a mixture of urban and rural settings in Bangladesh, India, Kenya, Malawi, Mali, Pakistan, and Tanzania. Each participant was followed up for 180 days. Primary analysis included all randomized participants by intention to treat. Interventions: Enrolled children were randomly assigned to receive either oral azithromycin, 10 mg/kg, or placebo once daily for 3 days in addition to standard WHO case management protocols for the management of acute watery diarrhea. Main Outcomes and Measures: Primary outcomes included all-cause mortality up to 180 days after enrollment and linear growth faltering 90 days after enrollment. Results: A total of 8266 children (4463 boys [54.0%]; mean [SD] age, 11.6 [5.3] months) were randomized. A total of 20 of 4133 children in the azithromycin group (0.5%) and 28 of 4135 children in the placebo group (0.7%) died (relative risk, 0.72; 95% CI, 0.40-1.27). The mean (SD) change in length-for-age z scores 90 days after enrollment was -0.16 (0.59) in the azithromycin group and -0.19 (0.60) in the placebo group (risk difference, 0.03; 95% CI, 0.01-0.06). Overall mortality was much lower than anticipated, and the trial was stopped for futility at the prespecified interim analysis. Conclusions and Relevance: The study did not detect a survival benefit for children from the addition of azithromycin to standard WHO case management of acute watery diarrhea in low-resource settings. There was a small reduction in linear growth faltering in the azithromycin group, although the magnitude of this effect was not likely to be clinically significant. In low-resource settings, expansion of antibiotic use is not warranted. Adherence to current WHO case management protocols for watery diarrhea remains appropriate and should be encouraged. Trial Registration: ClinicalTrials.gov Identifier: NCT03130114.publishedVersionPeer reviewe

    Tropical Data: Approach and Methodology as Applied to Trachoma Prevalence Surveys

    Get PDF
    PURPOSE: Population-based prevalence surveys are essential for decision-making on interventions to achieve trachoma elimination as a public health problem. This paper outlines the methodologies of Tropical Data, which supports work to undertake those surveys. METHODS: Tropical Data is a consortium of partners that supports health ministries worldwide to conduct globally standardised prevalence surveys that conform to World Health Organization recommendations. Founding principles are health ministry ownership, partnership and collaboration, and quality assurance and quality control at every step of the survey process. Support covers survey planning, survey design, training, electronic data collection and fieldwork, and data management, analysis and dissemination. Methods are adapted to meet local context and needs. Customisations, operational research and integration of other diseases into routine trachoma surveys have also been supported. RESULTS: Between 29th February 2016 and 24th April 2023, 3373 trachoma surveys across 50 countries have been supported, resulting in 10,818,502 people being examined for trachoma. CONCLUSION: This health ministry-led, standardised approach, with support from the start to the end of the survey process, has helped all trachoma elimination stakeholders to know where interventions are needed, where interventions can be stopped, and when elimination as a public health problem has been achieved. Flexibility to meet specific country contexts, adaptation to changes in global guidance and adjustments in response to user feedback have facilitated innovation in evidence-based methodologies, and supported health ministries to strive for global disease control targets

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Mosquito feeding assays to determine the infectiousness of naturally infected Plasmodium falciparum gametocyte carriers.

    Get PDF
    INTRODUCTION: In the era of malaria elimination and eradication, drug-based and vaccine-based approaches to reduce malaria transmission are receiving greater attention. Such interventions require assays that reliably measure the transmission of Plasmodium from humans to Anopheles mosquitoes. METHODS: WE COMPARED TWO COMMONLY USED MOSQUITO FEEDING ASSAY PROCEDURES: direct skin feeding assays and membrane feeding assays. Three conditions under which membrane feeding assays are performed were examined: assays with i) whole blood, ii) blood pellets resuspended with autologous plasma of the gametocyte carrier, and iii) blood pellets resuspended with heterologous control serum. RESULTS: 930 transmission experiments from Cameroon, The Gambia, Mali and Senegal were included in the analyses. Direct skin feeding assays resulted in higher mosquito infection rates compared to membrane feeding assays (odds ratio 2.39, 95% confidence interval 1.94-2.95) with evident heterogeneity between studies. Mosquito infection rates in membrane feeding assays and direct skin feeding assays were strongly correlated (p<0.0001). Replacing the plasma of the gametocyte donor with malaria naĂŻve control serum resulted in higher mosquito infection rates compared to own plasma (OR 1.92, 95% CI 1.68-2.19) while the infectiousness of gametocytes may be reduced during the replacement procedure (OR 0.60, 95% CI 0.52-0.70). CONCLUSIONS: Despite a higher efficiency of direct skin feeding assays, membrane feeding assays appear suitable tools to compare the infectiousness between individuals and to evaluate transmission-reducing interventions. Several aspects of membrane feeding procedures currently lack standardization; this variability makes comparisons between laboratories challenging and should be addressed to facilitate future testing of transmission-reducing interventions

    Exploring the potential usefulness of U.S. maize expired Plant Variety Protection Act lines for maize breeding in sub‐Saharan Africa

    No full text
    Maize (Zea mays L.) inbred lines with expired Plant Variety Protection Act (ExPVP) certificates are publicly available and potentially represent a new germplasm resource for many public and private breeding programs. The use of these inbred lines for maize breeding in Sub-Saharan African (SSA) was little investigated. Hence, this study was conducted to explore their potential usefulness. Ninety-six (96) ExPVP lines, two (2) temperate public lines and fourteen (14) tropical lines were evaluated in five (5) different trials from 2016 to 2018 in Burkina Faso to determine their phenotypic characteristics, resistance to drought, heat and three diseases, and to identify elite ExPVP lines for local maize breeding programs. Cluster analysis based on phenotypic traits highlighted a clear distinction between the different groups (NS vs SS heterotic groups, temperate vs tropical germplasms). The screening showed that 3%, 28% and 68% of ExPVP lines were resistant, tolerant and susceptible to maize leaf blight disease, respectively. However, the lines were either tolerant or resistant to curvularia leaf spot and maize streak virus. About 30% of ExPVP lines presented a tolerance to the three maize diseases tested and, 8% of the lines were tolerant to drought. Heat stress was severe to both ExPVP and tropical lines. Yield potential of ExPVP lines varied from 1.68 to 2635.63 kg/ha compared to 798.76 - 1707.56 kg/ha for tropical lines. The ExPVP lines identified showing tolerance to stresses and or a high yield performance can be integrated in inbred-hybrid development program

    Exploring the potential usefulness of U.S. maize expired Plant Variety Protection Act lines for maize breeding in sub‐Saharan Africa

    No full text
    Maize (Zea mays L.) inbred lines with expired Plant Variety Protection Act (ExPVP) certificates are publicly available and potentially represent a new germplasm resource for many public and private breeding programs. The use of these inbred lines for maize breeding in Sub-Saharan African (SSA) was little investigated. Hence, this study was conducted to explore their potential usefulness. Ninety-six (96) ExPVP lines, two (2) temperate public lines and fourteen (14) tropical lines were evaluated in five (5) different trials from 2016 to 2018 in Burkina Faso to determine their phenotypic characteristics, resistance to drought, heat and three diseases, and to identify elite ExPVP lines for local maize breeding programs. Cluster analysis based on phenotypic traits highlighted a clear distinction between the different groups (NS vs SS heterotic groups, temperate vs tropical germplasms). The screening showed that 3%, 28% and 68% of ExPVP lines were resistant, tolerant and susceptible to maize leaf blight disease, respectively. However, the lines were either tolerant or resistant to curvularia leaf spot and maize streak virus. About 30% of ExPVP lines presented a tolerance to the three maize diseases tested and, 8% of the lines were tolerant to drought. Heat stress was severe to both ExPVP and tropical lines. Yield potential of ExPVP lines varied from 1.68 to 2635.63 kg/ha compared to 798.76 - 1707.56 kg/ha for tropical lines. The ExPVP lines identified showing tolerance to stresses and or a high yield performance can be integrated in inbred-hybrid development program.This is a manuscript of an article published as Dao, Abdalla, Jacob Sanou, R. Diane Sanon, Issiaka Zeba, Sarah Coulibaly, and Thomas LĂŒbberstedt. "Exploring the potential usefulness of US maize expired Plant Variety Protection Act lines for maize breeding in sub-Saharan Africa." Crop Science (2020). doi: 10.1002/csc2.20189. Posted with permission.</p
    • 

    corecore