2,605 research outputs found

    In-vehicle technology for self-driving cars: Advantages and challenges for aging drivers

    Get PDF
    The development of self-driving cars or autonomous vehicles has progressed at an unanticipated pace. Ironically, the driver or the driver-vehicle interaction is a largely neglected factor in the development of enabling technologies for autonomous vehicles. Therefore, this paper discusses the advantages and challenges faced by aging drivers with reference to in-vehicle technology for self-driving cars, on the basis of findings of recent studies. We summarize age-related characteristics of sensory, motor, and cognitive functions on the basis of extensive age-related research, which can provide a familiar to better aging drivers. Furthermore, we discuss some key aspects that need to be considered, such as familar to learnability, acceptance, and net effectiveness of new in-vehicle technology, as addressed in relevant studies. In addition, we present research-based examples on aging drivers and advanced technology, including a holistic approach that is being developed by MIT AgeLab, advanced navigation systems, and health monitoring systems. This paper anticipates many questions that may arise owing to the interaction of autonomous technologies with an older driver population. We expect the results of our study to be a foundation for further developments toward the consideration of needs of aging drivers while designing self-driving vehicles.Korea (South). Ministry of Trade, Industry and Energy (Technology Innovation Program 1004761)Kookmin University. Faculty Research ProgramNew England University Transportation CenterSantos Family Foundatio

    Effect of supervised exercise on physical function and balance in patients with intermittent claudication

    Get PDF
    Background The aim of the study was to identify whether a standard supervised exercise programme (SEP) for patients with intermittent claudication improved specific measures of functional performance including balance. Methods A prospective observational study was performed at a single tertiary vascular centre. Patients with symptomatic intermittent claudication (Rutherford grades 1–3) were recruited to the study. Participants were assessed at baseline (before SEP) and 3, 6 and 12 months afterwards for markers of lower-limb ischaemia (treadmill walking distance and ankle : brachial pressure index), physical function (6-min walk, Timed Up and Go test, and Short Physical Performance Battery (SPPB) score), balance impairment using computerized dynamic posturography with the Sensory Organization Test (SOT), and quality of life (VascuQoL and Short Form 36). Results Fifty-one participants underwent SEP, which significantly improved initial treadmill walking distance (P = 0·001). Enrolment in a SEP also resulted in improvements in physical function as determined by 6-min maximum walking distance (P = 0·006), SPPB score (P < 0·001), and some domains of both generic (bodily pain, P = 0·025) and disease-specific (social domain, P = 0·039) quality of life. Significant improvements were also noted in balance, as determined by the SOT (P < 0·001). Conclusion Supervised exercise improves both physical function and balance impairment

    Hacer frente a los desafíos de una fuerza laboral que envejece con el uso de tecnologías usables y la auto-cuantificación

    Get PDF
    The world's population is aging at an unprecedented rate, this demographic shift will change all aspects of life, including work. The aging of the worforce and a higher percentage of workers who will work past traditional retirement years presents significant challenges and opportunities for employers. Older workers are a valuable resource, but in order to ensure they stay in good health, prevention will be key. Wearable technologies are quickly becoming ubiquitous, individuals are turning to them to monitor health, activities and hundreds of other quantifiable occurences. Wearable technologies could provide a new means for employers to tackle the challenges associated with an aging workforce by creating a wide spectrum of opportunities to intervene in terms of aging employees and extend their working lives by keeping them safe and healthy through prevention. Employers are already making standing desks available, and encouraging lunch time exercise, is it feasible for Wearables to make the jump from a tool for individuals to a method for employers to ensure better health, well-being and safety for their employees? The aim of this work is to lay out the implications for such interventions with Wearable technologies (monitoring health and well-being, oversight and safety, and mentoring and training) and challenges (privacy, acceptability, and scalability). While an ageing population presents significant challenges, including an aging work force, this demographic change should be seen, instead, as an opportunity rethink and innovate workplace health and take advantage of the experience of older workers. The Quantified-Self and Wearables can leverage interventions to improve employees’ health, safety and well-being.La población mundial está envejeciendo a un ritmo sin precedentes. El envejecimiento y un mayor porcentaje de trabajadores que trabajan más allá de los años de jubilación presentan importantes desafíos y oportunidades. Los trabajadores mayores son un recurso valioso, pero a fin de garantizar que permanezcan en buen estado de salud, la prevención será la clave. Tecnologías portátiles, ó wearables, están proporcionando un medio para hacer frente a el envejecimiento mediante la creación de un amplio espectro de oportunidades para intervenir y para prolongar la vida laboral de los colaboradores, mantenendoles seguros y saludables. El objetivo de este trabajo es exponer las implicaciones de este tipo de intervenciones con wearables (Control de salud, vigilancia, seguridad, y formación) y los desafíos (privacidad, aceptabilidad y escalabilidad). Los wearables pueden aprovechar y fortalecer las intervenciones para mejorar la salud, seguridad y el bienestar de los empleados.Martin Lavallière was supported by a postdoctoral research grant - Recherche en sécurité routière : Fonds de recherche du Québec - Société et culture (FRQSC), Société de l'assurance automobile du Québec (SAAQ), Fonds de recherche du Québec - Santé (FRQS). This work was partially developed with the financial support of the Luso-American Development Foundation - FLAD, through the research grant ref. rv14022, and of the MIT Portugal Program

    Contributors to the Fall Issue/Notes

    Get PDF
    Notes by Wilmer L. McLaughlin, John F. Mendoza, Patrick F. Coughlin, William J. O\u27Connor, Arthur L. Beaudette, Henry M. Shine, Jr., William M. Dickson, and William B. Wombacher

    Recent Decisions

    Get PDF
    Comments on recent decisions by Louis Albert Hafner, Patrick F. Coughlin, George J. Murphy, Benedict R. Danko, John E. Lindberg, William J. O\u27Connor, Mark Harry Berens, Joseph M. Gaydos, William G. Greif, Lawrence S. May, Jr., Charles James Perrin, Arthur L. Beaudette, F. Richard Kramer, Kenneth N. Obrecht, William T. Huston, and Maurice J. Moriarty

    Notes

    Get PDF
    Notes by Benedict R. Danko, Patrick F. Coughlin, William J. O\u27Connor, John E. Lindberg, Lawrence S. May, Jr., Arthur L. Beaudette, and Mark Harry Berens

    Identification of long-duration noise transients in LIGO and Virgo

    Full text link
    The LIGO and Virgo detectors are sensitive to a variety of noise sources, such as instrumental artifacts and environmental disturbances. The Stochastic Transient Analysis Multi-detector Pipeline (STAMP) has been developed to search for long-duration (t\gtrsim1s) gravitational-wave (GW) signals. This pipeline can also be used to identify environmental noise transients. Here we present an algorithm to determine when long-duration noise sources couple into the interferometers, as well as identify what these noise sources are. We analyze the cross-power between a GW strain channel and an environmental sensor, using pattern recognition tools to identify statistically significant structure in cross-power time-frequency maps. We identify interferometer noise from airplanes, helicopters, thunderstorms and other sources. Examples from LIGO's sixth science run, S6, and Virgo's third scientific run, VSR3, are presented.Comment: 10 pages, 7 figures, Gravitational-wave Physics & Astronomy Worksho
    corecore