2,791 research outputs found

    Modeling Multi-Wavelength Stellar Astrometry. I. SIM Lite Observations of Interacting Binaries

    Get PDF
    Interacting binaries consist of a secondary star which fills or is very close to filling its Roche lobe, resulting in accretion onto the primary star, which is often, but not always, a compact object. In many cases, the primary star, secondary star, and the accretion disk can all be significant sources of luminosity. SIM Lite will only measure the photocenter of an astrometric target, and thus determining the true astrometric orbits of such systems will be difficult. We have modified the Eclipsing Light Curve code (Orosz & Hauschildt 2000) to allow us to model the flux-weighted reflex motions of interacting binaries, in a code we call REFLUX. This code gives us sufficient flexibility to investigate nearly every configuration of interacting binary. We find that SIM Lite will be able to determine astrometric orbits for all sufficiently bright interacting binaries where the primary or secondary star dominates the luminosity. For systems where there are multiple components that comprise the spectrum in the optical bandpass accessible to SIM Lite, we find it is possible to obtain absolute masses for both components, although multi-wavelength photometry will be required to disentangle the multiple components. In all cases, SIM Lite will at least yield accurate inclinations, and provide valuable information that will allow us to begin to understand the complex evolution of mass-transferring binaries. It is critical that SIM Lite maintains a multi-wavelength capability to allow for the proper deconvolution of the astrometric orbits in multi-component systems.Comment: 12 pages, 6 figures, 6 tables. Accepted for publication in the Astrophysical Journa

    Notes

    Get PDF
    Notes by Benedict R. Danko, Patrick F. Coughlin, William J. O\u27Connor, John E. Lindberg, Lawrence S. May, Jr., Arthur L. Beaudette, and Mark Harry Berens

    Lack of Transit Timing Variations of OGLE-TR-111b: A re-analysis with six new epochs

    Get PDF
    We present six new transits of the exoplanet OGLE-TR-111b observed with the Magellan Telescopes in Chile between April 2008 and March 2009. We combine these new transits with five previously published transit epochs for this planet between 2005 and 2006 to extend the analysis of transit timing variations reported for this system. We derive a new planetary radius value of 1.019 +/- 0.026 R_J, which is intermediate to the previously reported radii of 1.067 +/- 0.054 R_J (Winn et al. 2007) and 0.922 +/- 0.057 R_J (Diaz et al. 2008). We also examine the transit timing variation and duration change claims of Diaz et al. (2008). Our analysis of all eleven transit epochs does not reveal any points with deviations larger than 2 sigma, and most points are well within 1 sigma. Although the transit duration nominally decreases over the four year span of the data, systematic errors in the photometry can account for this result. Therefore, there is no compelling evidence for either a timing or a duration variation in this system. Numerical integrations place an upper limit of about 1 M_E on the mass of a potential second planet in a 2:1 mean-motion resonance with OGLE-TR-111b.Comment: 28 pages, 7 tables, 6 figures. Accepted by Ap

    Measuring Transit Signal Recovery in the Kepler Pipeline. III. Completeness of the Q1-Q17 DR24 Planet Candidate Catalogue, with Important Caveats for Occurrence Rate Calculations

    Get PDF
    With each new version of the Kepler pipeline and resulting planet candidate catalogue, an updated measurement of the underlying planet population can only be recovered with an corresponding measurement of the Kepler pipeline detection efficiency. Here, we present measurements of the sensitivity of the pipeline (version 9.2) used to generate the Q1-Q17 DR24 planet candidate catalog (Coughlin et al. 2016). We measure this by injecting simulated transiting planets into the pixel-level data of 159,013 targets across the entire Kepler focal plane, and examining the recovery rate. Unlike previous versions of the Kepler pipeline, we find a strong period dependence in the measured detection efficiency, with longer (>40 day) periods having a significantly lower detectability than shorter periods, introduced in part by an incorrectly implemented veto. Consequently, the sensitivity of the 9.2 pipeline cannot be cast as a simple one-dimensional function of the signal strength of the candidate planet signal as was possible for previous versions of the pipeline. We report on the implications for occurrence rate calculations based on the Q1-Q17 DR24 planet candidate catalog and offer important caveats and recommendations for performing such calculations. As before, we make available the entire table of injected planet parameters and whether they were recovered by the pipeline, enabling readers to derive the pipeline detection sensitivity in the planet and/or stellar parameter space of their choice.Comment: 8 pages, 5 figures, full electronic version of Table 1 available at the NASA Exoplanet Archive; accepted by ApJ May 2nd, 201

    Observations of the GRB afterglow ATLAS17aeu and its possible association with GW170104

    Get PDF
    We report the discovery and multi-wavelength data analysis of the peculiar optical transient, ATLAS17aeu. This transient was identified in the skymap of the LIGO gravitational wave event GW170104 by our ATLAS and Pan-STARRS coverage. ATLAS17aeu was discovered 23.1hrs after GW170104 and rapidly faded over the next 3 nights, with a spectrum revealing a blue featureless continuum. The transient was also detected as a fading x-ray source by Swift and in the radio at 6 and 15 GHz. A gamma ray burst GRB170105A was detected by 3 satellites 19.04hrs after GW170104 and 4.10hrs before our first optical detection. We analyse the multi-wavelength fluxes in the context of the known GRB population and discuss the observed sky rates of GRBs and their afterglows. We find it statistically likely that ATLAS17aeu is an afterglow associated with GRB170105A, with a chance coincidence ruled out at the 99\% confidence or 2.6σ\sigma. A long, soft GRB within a redshift range of 1z2.91 \lesssim z \lesssim 2.9 would be consistent with all the observed multi-wavelength data. The Poisson probability of a chance occurrence of GW170104 and ATLAS17aeu is p=0.04p=0.04. This is the probability of a chance coincidence in 2D sky location and in time. These observations indicate that ATLAS17aeu is plausibly a normal GRB afterglow at significantly higher redshift than the distance constraint for GW170104 and therefore a chance coincidence. However if a redshift of the faint host were to place it within the GW170104 distance range, then physical association with GW170104 should be considered.Comment: 16 pages, 6 figures, accepted to Ap

    Identification of long-duration noise transients in LIGO and Virgo

    Full text link
    The LIGO and Virgo detectors are sensitive to a variety of noise sources, such as instrumental artifacts and environmental disturbances. The Stochastic Transient Analysis Multi-detector Pipeline (STAMP) has been developed to search for long-duration (t\gtrsim1s) gravitational-wave (GW) signals. This pipeline can also be used to identify environmental noise transients. Here we present an algorithm to determine when long-duration noise sources couple into the interferometers, as well as identify what these noise sources are. We analyze the cross-power between a GW strain channel and an environmental sensor, using pattern recognition tools to identify statistically significant structure in cross-power time-frequency maps. We identify interferometer noise from airplanes, helicopters, thunderstorms and other sources. Examples from LIGO's sixth science run, S6, and Virgo's third scientific run, VSR3, are presented.Comment: 10 pages, 7 figures, Gravitational-wave Physics & Astronomy Worksho

    Mutations in the mitochondrial cysteinyl-tRNA synthase gene, CARS2, lead to a severe epileptic encephalopathy and complex movement disorder

    Get PDF
    Background: Mitochondrial disease is often suspected in cases of severe epileptic encephalopathy especially when a complex movement disorder, liver involvement and progressive developmental regression are present. Although mutations in either mitochondrial DNA or POLG are often present, other nuclear defects in mitochondrial DNA replication and protein translation have been associated with a severe epileptic encephalopathy. Methods: and results We identified a proband with an epileptic encephalopathy, complex movement disorder and a combined mitochondrial respiratory chain enzyme deficiency. The child presented with neurological regression, complex movement disorder and intractable seizures. A combined deficiency of mitochondrial complexes I, III and IV was noted in liver tissue, along with increased mitochondrial DNA content in skeletal muscle. Incomplete assembly of complex V, using blue native polyacrylamide gel electrophoretic analysis and complex I, using western blotting, suggested a disorder of mitochondrial transcription or translation. Exome sequencing identified compound heterozygous mutations in CARS2, a mitochondrial aminoacyl-tRNA synthetase. Both mutations affect highly conserved amino acids located within the functional ligase domain of the cysteinyl-tRNA synthase. A specific decrease in the amount of charged mt-tRNACys was detected in patient fibroblasts compared with controls. Retroviral transfection of the wild-type CARS2 into patient skin fibroblasts led to the correction of the incomplete assembly of complex V, providing functional evidence for the role of CARS2 mutations in disease aetiology. Conclusions: Our findings indicate that mutations in CARS2 result in a mitochondrial translational defect as seen in individuals with mitochondrial epileptic encephalopathy

    Central exclusive production of longlived gluinos at the LHC

    Get PDF
    We examine the possibility of producing gluino pairs at the LHC via the exclusive reaction pp -> p+gluino+gluino+p in the case where the gluinos are long lived. Such long lived gluinos are possible if the scalar super-partners have large enough masses. We show that it may be possible to observe the gluinos via their conversion to R-hadron jets and measure their mass to better than 1% accuracy for masses below 350 GeV with 300/fb of data.Comment: 13 pages, 9 figures. Minor corrections to version
    corecore