196 research outputs found

    Multi-Level Effects of Low Dose Rate Ionizing Radiation on Southern Toad, \u3cem\u3eAnaxyrus [Bufo] terrestris\u3c/em\u3e

    Get PDF
    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development -embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of 137Cs at 0.13, 2.4, 21, and 222 mGy d-1, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21 mGy d-1 and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae

    CHRONIC ZINC SCREENING WATER EFFECT RATIO FOR THE H-12 OUTFALL, SAVANNAH RIVER SITE

    Get PDF
    In response to proposed Zn limits for the NPDES outfall H-12, a Zn screening Water Effects Ratio (WER) study was conducted to determine if a full site-specific WER is warranted. Using standard assumptions for relating the lab results to the stream, the screening WER data were consistent with the proposed Zn limit and suggest that a full WER would result in a similar limit. Addition of a humate amendment to the outfall water reduced Zn toxicity, but the toxicity reduction was relatively small and unlikely to impact proposed Zn limits. The screening WER data indicated that the time and expense required to perform a full WER for Zn is not warranted

    DECam-GROWTH Search for the Faint and Distant Binary Neutron Star and Neutron Star-Black Hole Mergers in O3a

    Get PDF
    Synoptic searches for the optical counterpart to a binary neutron star (BNS) or neutron star-black hole (NSBH) merger can pose significant challenges towards the discovery of kilonovae and performing multi-messenger science. In this work, we describe the advantage of a global multi-telescope network towards this end, with a particular focus on the key and complementary role the Dark Energy Camera (DECam) plays in multi-facility follow-up. We describe the Global Relay of Observatories Watching Transients Happen (GROWTH) Target-of-Opportunity (ToO) Marshal, a common web application we built to ingest events, plan observations, search for transient candidates, and retrieve performance summary statistics for all of the telescopes in our network. Our infrastructure enabled us to conduct observations of two events during O3a, S190426c and S190510g. Furthermore, our analysis of deep DECam observations of S190814bv conducted by the DESGW team, and access to a variety of global follow-up facilities allowed us to place meaningful constraints on the parameters of the kilonova and the merging binary. We emphasize the importance of a global telescope network in conjunction with a power telescope like DECam in performing searches for the counterparts to gravitational-wave sources

    Supplement: "Going the Distance: Mapping Host Galaxies of LIGO and Virgo Sources in Three Dimensions Using Local Cosmography and Targeted Follow-up" (2016, ApJL, 829, L15)

    Get PDF
    This is a supplement to the Letter of Singer et al., in which we demonstrated a rapid algorithm for obtaining joint 3D estimates of sky location and luminosity distance from observations of binary neutron star mergers with Advanced LIGO and Virgo. We argued that combining the reconstructed volumes with positions and redshifts of possible host galaxies can provide large-aperture but small field of view instruments with a manageable list of targets to search for optical or infrared emission. In this Supplement, we document the new HEALPix-based file format for 3D localizations of gravitational-wave transients. We include Python sample code to show the reader how to perform simple manipulations of the 3D sky maps and extract ranked lists of likely host galaxies. Finally, we include mathematical details of the rapid volume reconstruction algorithm

    GROWTH on S190426c: Real-time Search for a Counterpart to the Probable Neutron Star–Black Hole Merger using an Automated Difference Imaging Pipeline for DECam

    Get PDF
    The discovery of a transient kilonova following the gravitational-wave (GW) event GW170817 highlighted the critical need for coordinated rapid and wide-field observations, inference, and follow-up across the electromagnetic spectrum. In the southern hemisphere, the Dark Energy Camera (DECam) on the Blanco 4 m telescope is well suited to this task, as it is able to cover wide fields quickly while still achieving the depths required to find kilonovae like the one accompanying GW170817 to ~500 Mpc, the binary neutron star (NS) horizon distance for current generation of LIGO/Virgo collaboration (LVC) interferometers. Here, as part of the multi-facility follow-up by the Global Relay of Observatories Watching Transients Happen collaboration, we describe the observations and automated data movement, data reduction, candidate discovery, and vetting pipeline of our target-of-opportunity DECam observations of S190426c, the first possible NS–black hole merger detected in GWs. Starting 7.5 hr after S190426c, over 11.28 hr of observations, we imaged an area of 525 deg^2 (r band) and 437 deg^2 (z band); this was 16.3% of the total original localization probability, and nearly all of the probability visible from the southern hemisphere. The machine-learning-based pipeline was optimized for fast turnaround, delivering transients for human vetting within 17 minutes, on average, of shutter closure. We reported nine promising counterpart candidates 2.5 hr before the end of our observations. One hour after our data-taking ended (roughly 20 hr after the announcement of S190426c), LVC released a refined skymap that reduced the probability coverage of our observations to 8.0%, demonstrating a critical need for localization updates on shorter (~hour) timescales. Our observations yielded no detection of a bona fide counterpart to m_z = 21.7 and m_r = 22.2 at the 5σ level of significance, consistent with the refined LVC positioning. We view these observations and rapid inferencing as an important real-world test for this novel end-to-end wide-field pipeline

    An internal promoter underlies the difference in disease severity between N- and C-terminal truncation mutations of Titin in zebrafish

    Get PDF
    Truncating mutations in the giant sarcomeric protein Titin result in dilated cardiomyopathy and skeletal myopathy. The most severely affected dilated cardiomyopathy patients harbor Titin truncations in the C-terminal two-thirds of the protein, suggesting that mutation position might influence disease mechanism. Using CRISPR/Cas9 technology, we generated six zebrafish lines with Titin truncations in the N-terminal and C-terminal regions. Although all exons were constitutive, C-terminal mutations caused severe myopathy whereas N-terminal mutations demonstrated mild phenotypes. Surprisingly, neither mutation type acted as a dominant negative. Instead, we found a conserved internal promoter at the precise position where divergence in disease severity occurs, with the resulting protein product partially rescuing N-terminal truncations. In addition to its clinical implications, our work may shed light on a long-standing mystery regarding the architecture of the sarcomere

    Multi-Messenger Astronomy with Extremely Large Telescopes

    Get PDF
    The field of time-domain astrophysics has entered the era of Multi-messenger Astronomy (MMA). One key science goal for the next decade (and beyond) will be to characterize gravitational wave (GW) and neutrino sources using the next generation of Extremely Large Telescopes (ELTs). These studies will have a broad impact across astrophysics, informing our knowledge of the production and enrichment history of the heaviest chemical elements, constrain the dense matter equation of state, provide independent constraints on cosmology, increase our understanding of particle acceleration in shocks and jets, and study the lives of black holes in the universe. Future GW detectors will greatly improve their sensitivity during the coming decade, as will near-infrared telescopes capable of independently finding kilonovae from neutron star mergers. However, the electromagnetic counterparts to high-frequency (LIGO/Virgo band) GW sources will be distant and faint and thus demand ELT capabilities for characterization. ELTs will be important and necessary contributors to an advanced and complete multi-messenger network.Comment: White paper submitted to the Astro2020 Decadal Surve

    GROWTH on S190510g: DECam Observation Planning and Follow-Up of a Distant Binary Neutron Star Merger Candidate

    Get PDF
    The first two months of the third Advanced LIGO and Virgo observing run (2019 April–May) showed that distant gravitational-wave (GW) events can now be readily detected. Three candidate mergers containing neutron stars (NS) were reported in a span of 15 days, all likely located more than 100 Mpc away. However, distant events such as the three new NS mergers are likely to be coarsely localized, which highlights the importance of facilities and scheduling systems that enable deep observations over hundreds to thousands of square degrees to detect the electromagnetic counterparts. On 2019 May 10 02:59:39.292 UT the GW candidate S190510g was discovered and initially classified as a binary neutron star (BNS) merger with 98% probability. The GW event was localized within an area of 3462 deg^2, later refined to 1166 deg^2 (90%) at a distance of 227 ± 92 Mpc. We triggered Target-of-Opportunity observations with the Dark Energy Camera (DECam), a wide-field optical imager mounted at the prime focus of the 4 m Blanco Telescope at Cerro Tololo Inter-American Observatory in Chile. This Letter describes our DECam observations and our real-time analysis results, focusing in particular on the design and implementation of the observing strategy. Within 24 hr of the merger time, we observed 65% of the total enclosed probability of the final skymap with an observing efficiency of 94%. We identified and publicly announced 13 candidate counterparts. S190510g was reclassified 1.7 days after the merger, after our observations were completed, with a "BNS merger" probability reduced from 98% to 42% in favor of a "terrestrial classification

    Fast-transient Searches in Real Time with ZTFReST: Identification of Three Optically Discovered Gamma-Ray Burst Afterglows and New Constraints on the Kilonova Rate

    Get PDF
    The most common way to discover extragalactic fast transients, which fade within a few nights in the optical, is via follow-up of gamma-ray burst and gravitational-wave triggers. However, wide-field surveys have the potential to identify rapidly fading transients independently of such external triggers. The volumetric survey speed of the Zwicky Transient Facility (ZTF) makes it sensitive to objects as faint and fast fading as kilonovae, the optical counterparts to binary neutron star mergers, out to almost 200 Mpc. We introduce an open-source software infrastructure, the ZTF REaltime Search and Triggering, ZTFReST, designed to identify kilonovae and fast transients in ZTF data. Using the ZTF alert stream combined with forced point-spread-function photometry, we have implemented automated candidate ranking based on their photometric evolution and fitting to kilonova models. Automated triggering, with a human in the loop for monitoring, of follow-up systems has also been implemented. In 13 months of science validation, we found several extragalactic fast transients independently of any external trigger, including two supernovae with post-shock cooling emission, two known afterglows with an associated gamma-ray burst (ZTF20abbiixp, ZTF20abwysqy), two known afterglows without any known gamma-ray counterpart (ZTF20aajnksq, ZTF21aaeyldq), and three new fast-declining sources (ZTF20abtxwfx, ZTF20acozryr, ZTF21aagwbjr) that are likely associated with GRB200817A, GRB201103B, and GRB210204A. However, we have not found any objects that appear to be kilonovae. We constrain the rate of GW170817-like kilonovae to R < 900 Gpc-3 yr-1 (95% confidence). A framework such as ZTFReST could become a prime tool for kilonova and fast-transient discovery with the Vera Rubin Observatory

    Low-latency gravitational wave alert products and their performance in anticipation of the fourth LIGO-Virgo-KAGRA observing run

    Full text link
    Multi-messenger searches for binary neutron star (BNS) and neutron star-black hole (NSBH) mergers are currently one of the most exciting areas of astronomy. The search for joint electromagnetic and neutrino counterparts to gravitational wave (GW)s has resumed with Advanced LIGO (aLIGO)'s, Advanced Virgo (AdVirgo)'s and KAGRA's fourth observing run (O4). To support this effort, public semi-automated data products are sent in near real-time and include localization and source properties to guide complementary observations. Subsequent refinements, as and when available, are also relayed as updates. In preparation for O4, we have conducted a study using a simulated population of compact binaries and a Mock Data Challenge (MDC) in the form of a real-time replay to optimize and profile the software infrastructure and scientific deliverables. End-to-end performance was tested, including data ingestion, running online search pipelines, performing annotations, and issuing alerts to the astrophysics community. In this paper, we present an overview of the low-latency infrastructure as well as an overview of the performance of the data products to be released during O4 based on a MDC. We report on expected median latencies for the preliminary alert of full bandwidth searches (29.5 s) and for the creation of early warning triggers (-3.1 s), and show consistency and accuracy of released data products using the MDC. This paper provides a performance overview for LVK low-latency alert structure and data products using the MDC in anticipation of O4
    • …
    corecore