

Retention: Permanent

Chronic Zinc Screening Water Effect Ratio for the H-12 Outfall, Savannah River Site

Daniel P. Coughlin, Brian B. Looney and Margaret R. Millings

JANUARY 12, 2009

Savannah River National Laboratory Savannah River Nuclear Solutions <u>Aiken, SC 29808</u> **Prepared for the U.S. Department of Energy Under Contract Number DE-AC09-08SR22470**

DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors,

subcontractors or their employees, makes any express or implied:

1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or

2. representation that such use or results of such use would not infringe privately owned rights; or

3. endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Printed in the United States of America

Prepared for U.S. Department of Energy

Retention: Permanent

Chronic Zn Screening WER for the H-12 Outfall, Savannah River Site

Daniel P. Coughlin, Brian B. Looney and Margaret R. Millings Savannah River National Laboratory, Aiken, SC 29802

JANUARY 12, 2009

Savannah River National Laboratory Savannah River Nuclear Solutions Savannah River Site <u>Aiken, SC 29808</u> **Prepared for the U.S. Department of Energy Under Contract Number DE-AC09-08SR22470**

SRNS-STI-2009-00012, Revision 0 Page ii of vi

REVIEWS AND APPROVALS

Daniel P. Coughlin, Savannah River National Laboratory

Brian B. Looney, Savannah River National Laboratory

12 JANVARY 2009 Date

Date

<u>Margaret R. Killings</u> Margaret R. Millings, Savannah River National Laboratory

John Gladden, Level 3 Manager, Savannah River National Laboratory

1/12/09Date 1/12/09

TABLE OF CONTENTS

Execut	tive Summary	1
1.0	Introduction	1
2.0	Methods	1
3.0	Results	3
4.0	Discussion	3
5.0	Conclusions	4
6.0	References	4

Appendices:

A.	ETT Screening WER Report for H-12 Outfall	5
B.	H-12 WER Sample Metal Analysis	17
C.	Report on Recalculation Procedure for Zinc: NPDES Outfall H-12	19

LIST OF FIGURES

LIST OF ACRONYMS

BML	Biotic Ligand Model
DOC	Dissolved Organic Carbon
NPDES	National Pollutant Discharge Elimination System
SRNL	Savannah River National Laboratory
SRS	Savannah River Site
WER	Water Effects Ratio

SRNS-STI-2009-00012, Revision 0 Page vi of vi

{blank page}

Executive Summary

In response to proposed Zn limits for the NPDES outfall H-12, a Zn screening Water Effects Ratio (WER) study was conducted to determine if a full site-specific WER is warranted. Using standard assumptions for relating the lab results to the stream, the screening WER data were consistent with the proposed Zn limit and suggest that a full WER would result in a similar limit. Addition of a humate amendment to the outfall water reduced Zn toxicity, but the toxicity reduction was relatively small and unlikely to impact proposed Zn limits. The screening WER data indicated that the time and expense required to perform a full WER for Zn is not warranted.

1.0 Introduction

To support National Pollutant Discharge Elimination System (NPDES) permit development at the Savannah River Site (SRS), limits for Zn were proposed based on a simplified "recalculation" method. The recalculation was performed in 2007 resulting in a proposed limit for Zn of 153.2 µg/L. The recalculation procedure simplifies data requirements, focusing on a few dominant mechanisms that reduce toxicity in outfalls and surface water (U.S. EPA 1985). A WER has the capability to account for a broader array of potential detoxifying processes in the outfall water and can help refine discharge limits. Due to the high cost and extended timeframe required for a full WER, a screening WER is usually performed first to determine if the WER is likely to substantively alter the limits developed using recalculation.

The screening WER is performed similarly to a full WER except that it is based on a single sample rather than samples collected over time to represent the varying real-world conditions. This particular WER study was also modified to include a preliminary assessment of the impact of dissolved organic carbon (DOC) amendment on Zn toxicity. SRS is currently designing a DOC amendment system to mitigate copper toxicity in the H-12 outfall. The screening WER was performed in accordance with the *Interim Guidance on Determination and Use of Water-Effect Ratios for Metals* (U.S. EPA 1994); a determination that the expense and time required for a full site-specific WER is warranted is dependent on a screening WER result that would indicate the potential for modifying (increasing) the proposed permit limits for Zn while assuring environmental protection requirements are met.

2.0 Method

Outfall H-12 is located near the junction of Road 4 and Road E at the Savannah River Site. It flows south for approximately 750 ft where it merges with an unnamed tributary that also receives discharges from the H-08 outfall. The combined stream flows freely for a distance of about 1500 ft to an extension of the Four Mile Branch (FMB) swamp.

On August 5, 2008 20 liters of raw H-12 effluent was collected directly from the NPDES H-12 sampling platform (Figure 1). A peristaltic pump with the siphon suspended in the channel's water column was used to prevent the collection or disturbance of sediment. The sample collection corresponded with a release of the H-Area Segregated Cooling Basin (281-5H). The

SRNS-STI-2009-00012, Revision 0 Page 2 of 57

sample was immediately chilled and transported to the Savannah River National Laboratory (SRNL) where half of it was treated with 3.39 mg/L organic carbon using a commercially available potassium humate solution (Huma K[©], Land and Sea Organics, Modesto CA). The DOC treatment used in this study was intended to mimic the operation of the carbon injection system soon to be built for the mitigation of copper toxicity at the H-12 outfall (Millings et al., 2008). The quantity of amendment added to the treated samples was determined using the Biotic Ligand Model (BLM) Windows Interface Version 2.2.1 (Hydroqual, 2007); the amendment interacts with the copper and reduces chronic toxicity for copper levels up to 25 ug/L. The results of the BLM indicated that the quantity of Huma K[©] amendment required is a function of pH and the simplified equation for required dose is:

$$C_{\text{target}} = \{ (9.465 \times 10^{11}) (\text{H}^+)^2 + (1.690 \times 10^7) (\text{H}^+) + 1.108 \} / 0.96 \\ = \{ (9.465 \times 10^{11}) (10^{-\text{pH}})^2 + (1.690 \times 10^7) (10^{-\text{pH}}) + 1.108 \} / 0.96 \}$$

Where:

 C_{target} is the desired amendment concentration in the treated wastewater (mg DOC/L) C_{stock} is the amendment concentration in the storage tank (mg DOC/L)

This equation was the basis for the amendment dose (3.39 mg/L organic carbon) at a pH of 6.9, as measured in the August 5, 2008 sample of H-12 effluent.

A chronic Zn screening WER was conducted by ETT Environmental, Inc. in Greer, SC (Appendix A). This study evaluated the toxicity of both the raw H-12 sample and the amended H-12 sample relative to standard laboratory water. For each type of water, the test organism *Ceriodaphnia dubia* was exposed to varying levels of added Zn. Based on the reproduction of *C. dubia* at the different Zn levels, a maximum Zn concentration that met a predetermined toxicity target was determined for each water type and adjusted to a constant hardness. The ratio of the result for each test water to the result for the laboratory standard water (water effects ratio) provides a measure of the non-hardness biogeochemistry in the tested water that reduces (or increases) toxicity. WER values greater than 1 indicate that zinc exhibits less toxicity in the tested water than in the laboratory water. As the screening WER result increases, zinc toxicity decreases in the test water. A sub-sample of the untreated water was analyzed for copper at the Environmental/Bioassay Laboratory on the Savannah River Site (Appendix B).

SRNS-STI-2009-00012, Revision 0 Page 3 of 57

Figure 1. NPDES H-12 sampling station

3.0 Results

The study determined the untreated effluent has a WER value of 5.35 while the DOC treated water has a WER value of 7.24. That is a 1.34 fold reduction in Zn toxicity for the DOC treated effluent at the laboratory standard water hardness of 50 mg/L. Applying the screening WER outcomes to the outfall conditions (e.g., flow rates, hardness, etc.) results in an approximate average permit limit of 122 μ g/L Zn for the untreated effluent and 168 μ g/L Zn limit for the DOC treated discharge. A full site specific WER using multiple samples over time, representing a range of outfall conditions, would be needed to support a WER-based permit limit. The copper concentration of the H-12 water used in this study was < 25 μ g/L and not likely to have affected the results of the Zn screening WER, particularly for the carbon amended sample.

4.0 Discussion

A proposed average permit limit for Zn in the H-12 outfall, 153.2 µg/L, was previously developed based on a standard recalculation procedure (Appendix C). A central goal of the standard recalculation procedure was to provide a reasonable and technically defensible approach for estimating permit limits, and an approach that can be applied cost effectively so that a full WER is not required for every outfall. The recalculation procedure simplifies the data requirements and focuses on some of the dominant mechanisms that reduce toxicity in outfalls and surface water. *Prima facie* differences between the outcome for the recalculation procedure and the outcome from a WER are the result of differences/simplifications in standardized assumptions (e.g., hardness is treated differently in the two approaches and suspended solids are emphasized in the recalculation). Importantly, the WER has the capability to account for a broader array of potential detoxifying processes in the outfall water – processes such as the impact of the DOC amendment. Due to the high cost and extended timeframe required for a full WER, many sites apply a stepwise decision process in which: 1) a recalculation procedure is performed, 2) (if there is a potentially significant unquantified detoxification process) perform a

SRNS-STI-2009-00012, Revision 0 Page 4 of 57 screening WER to determine if the recalculation procedure has adequately represented the water chemistry, and 3) perform a full WER only if the results of the screening WER and the recalculation procedure are significantly different.

5.0 Conclusions

While the DOC amendment reduced Zn toxicity, the screening WER results do not warrant performing a full WER. The proposed H-12 Zn limit of 153.2 μ g/L is bounded by the results of the screening WER of 122 μ g/L and 168 μ g/L for untreated and treated waters, respectively. The data suggest that the recalculation procedure provides a reasonable and appropriate basis for developing a Zn limit and that a full WER would result in a similar limit and would require significant time and expense to perform.

6.0 References

HydroQual, Inc, 2007. User's Guide and Reference Manual for Biotic Ligand Model, Windows Interface, Version 2.2.1, February 2007.

Millings, M. R., B. B. Looney, N. V. Halverson and R. L. Nichols. 2008. Detoxification of Copper in Surface Water Discharges Using Soluble Humic Acid Amendment: Technical Summary of Results. Washington Savannah River Company report WSRC-STI-2008-00105.

U.S. EPA. 1985. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses. PB85-227049. National Technical Information Service, Springfield, VA.

U.S. EPA. 1994. Interim Guidance on Determination and Use of Water-Effect Ratios for Metals. EPA-823-B-94-001 or PB94-140951. National Technical Information Service, Springfield, VA.

SRNS-STI-2009-00012, Revision 0 Page 5 of 57

Appendix A

ETT Screening WER Report for H-12 Outfall

P.O. Box 16414, Greenville, SC 29606

(864) 877-6942 . FAX (864) 877-6938

Craftsman Court, Greer, SC 29650

Screening Tests to Determine the Feasibility of Conducting a Water Effect Ratio for Adjustment of Zinc Limits

Outfall: WSRC H-12

Metal: Zinc Test Type: Chronic Survival and Reproduction Test Test Species: *Ceriodaphnia dubia*

> September 2008 Amended 9/22/08

1.0 Introduction

In response to the anticipated proposed limits in the draft permit, screening studies were initiated to determine whether a Site Specific / WER studies would be likely to significantly increase permit limits for zinc. A screening WER was conducted for untreated H-12 effluent and H-12 effluent which was spiked with Dissolved Organic Carbon (DOC). This report presents the result of the screening studies.

2.0 Methods

A WER involves comparing the toxic level of a metal in laboratory water to the toxic level of a metal in site water. In this study Diluted Mineral Water (DMW) at a hardness of 50 mg/L was used as the "laboratory water". Because laboratory water contains no natural chelating agents which can bind aquatic metals and make them less biologically available, metals such as zinc tend to be toxic at lower concentrations than they are in natural site waters. Downstream water is typically a mixture of effluent and upstream water. In this study 100% effluent was used as site water, because it is the In-Stream Wastewater Concentration (IWC).

2.1 <u>Preparation of Test Solutions</u>

2.1.1 Laboratory Water

Due to an adequate database of test results of zinc in laboratory water which has been developed at ETT Environmental, no additional tests were needed. Existing data was used.

2.1.2 Simulated Downstream Water

Simulated downstream water was 100% effluent. Zinc was spiked into untreated effluent and effluent spiked with DOC at a series of seven test concentrations. It was spiked from a stock solution of 50 mg/L of zinc sulfate $ZnSO_4$ 7H₂0 (11.37 mg/L as Zn). The volumes of stock solution added were as follows;

		SRNS-STI-2009-00012, Revision 0
Test Concentration	mL Stock Soln.	Total Volume (mL)
0 ug/L (Control)	0	1400
34.3 ug/L	4.22	1400
49 ug/L	6.03	1400
70 ug/L	8.62	1400
100 ug/L	12.31	1400
143 ug/L	17.51	1400
204 ug/L	25.12	1400

2.2 <u>Metal Analyses</u>

Total and dissolved zinc were measured in each test concentration at the beginning of the test. Zinc was measured by an atomic absorption spectrophotometer using method 3111B (Standard Methods 18th Ed.).

2.3 <u>Toxicity Testing</u>

Chronic Survival and Reproduction tests with the test organism *Ceriodaphnia dubia* were conducted with each zinc treatment level. The methodology is summarized as follows;

1. Temperature:	25°C ≫ 1	
2. Light:	100 ft-cd; 16 hr lt/8 hr dk	
3. Test Chamber Size:	30 mL plastic cup	
4. Test Solution Volume:	15 mL	
5. Renewal:	Daily	
6. Age of Test Organisms:	<24 hours	
7. No. of Neonates / Test Chamber	1	
8. No. Replicates / Dilution	10	
9. Feeding:	Daily with 0.05 mL Selenastrum and 0.1 m	nL YAT
10. Cleaning of Test Chambers:	None	
11. Aeration:	None	
12. Dilution Water		
	N/2	4
13. Effluent Concentrations:	as noted in 2.1.2	
14. Dilution Factor:	0.7	
15. Test Duration:	7 days / 3 broods	
16. Test End Point	EC50 (using non-linear regression)	

3.0 Results

3.1 <u>Laboratory Water</u>

Data from previous testing has indicated that zinc is chronically toxic in the 50 mg/L hardness laboratory water at approximately 66.5 ug/L (LC_{50} at a hardness of 50 mg/L).

3.2 <u>Untreated Effluent</u>

The results for the tests with zinc spiked into untreated H-12 effluent are summarized as follows.

Nominal Test Concentration	Measured Test <u>Concentration</u>	Mean Reproduction <u>Untreated Effluent</u>
0 ug/L (Control) 34.3 ug/L 49.0 ug/L 70.0 ug/L 100 ug/L 143 ug/L	27.6 ug/L T-Zn 80 ug/L T-Zn 85 ug/L T-Zn 95 ug/L T-Zn 124 ug/L T-Zn 202 ug/L T-Zn	19.5 20.6 17.2 2.9 0.0 0.0
145 ug/L	202 ug/L 1-21	0.0

$EC_{50} = 89.9 \text{ ug/L T-Zn}$

3.3 DOC treated Effluent

The results for the tests with zinc spiked into treated H-12 effluent are summarized as follows.

Nominal Test Concentration	Measured Test <u>Concentration</u>	Mean Reproduction <u>Untreated Effluent</u>
0 ug/L (Control)	27.6 ug/L T-Zn	21.0
49.0 ug/L	77 ug/L T-Zn	20.4
70.0 ug/L	85 ug/L T-Zn	19.8
100 ug/L	120 ug/L T-Zn	11.0
143 ug/L	170 ug/L T-Zn	4.3
204 ug/L	208 ug/L T-Zn	0.0

 $EC_{50} = 123.8 \text{ ug/L T-Zn}$

4.0 Determination of Water Effect Ratio

4.1 Adjustment of Laboratory Water Result to Hardness of Site Water

In order to determine a WER the EC_{50} values for the laboratory water must be adjusted to the same hardness as the effluent. This is done using the following equation;

(H-12 Untreated) Adjusted EC50 = (Site Hardness/Lab Water Hardness)^{$$0.8545$$} *Original EC₅₀
= $(10/50)^{0.8545}$ * 66.5 ug/L
= 16.8 ug/L Zn

(H-12 DOC Treated) Adjusted EC50 = (Site Hardness/Lab Water Hardness)^{$$0.8545$$} *Original EC₅₀
= $(10.2/50)^{0.8545}$ * 66.5 ug/L
= 17.1 ug/L Zn

4.2 <u>Calculation of WER</u>

The WER is calculated as follows; Effluent LC_{50} / Adjusted Laboratory Water LC_{50}

Untreated Effluent WER = 89.9 / 16.8 = 5.35 **DOC Treated Effluent WER** = 123.8 / 17.1 = 7.24

NOTE: Hardness of the DOC treated effluent was measured as 16 mg/L by the titrimetric method. However, based on measured concentrations of calcium and magnesium in the DOC, the hardness should have been 10.2 mg/L. According to Standard Methods (20th Ed.) suspended or colloidal organic matter may interfere with the end point for the titrimetric method. For the purposes of the calculations in this report the hardness used is 10.2 mg/L.

5.0 Predicted Site Specific Limits for Zinc

The Site Specific Limits for Zinc are calculated as follows;

[(EPA Water Quality Criterion) x (WER)x (Downstream Flow)] – [(Upstream Flow) x (Upstream Zn Conc.)]

(Effluent Flow)

Untreated Effluent

The EPA Water Quality Criterion (Maximum) for Zinc at the Site Hardness of 10 mg/L (for untreated effluent) = 17.03 ug/L. Incorporating the results of the Recalculation Procedure the EPA Water Quality Criterion for Zinc at a Site Hardness of 10 mg/L is adjusted to 22.88 ug/L.

The WER is 5.35

Downstream flow = effluent flow.

The 7Q10 upstream flow is 0 mgd = 0 cfs.

The default upstream zinc concentration to be used 0 mg/L.

Using the formula above, the Predicted Average Site Specific Limit is 0.122 mg/L Zn.

DOC Treated Effluent

The EPA Water Quality Criterion (Maximum) for Zinc at the Site Hardness of 10.2 mg/L (for untreated effluent) = 17.32 ug/L. Incorporating the results of the Recalculation Procedure the EPA Water Quality Criterion for Zinc at a Site Hardness of 10.2 mg/L is adjusted to 23.27 ug/L.

The WER is 7.24

Downstream flow = effluent flow.

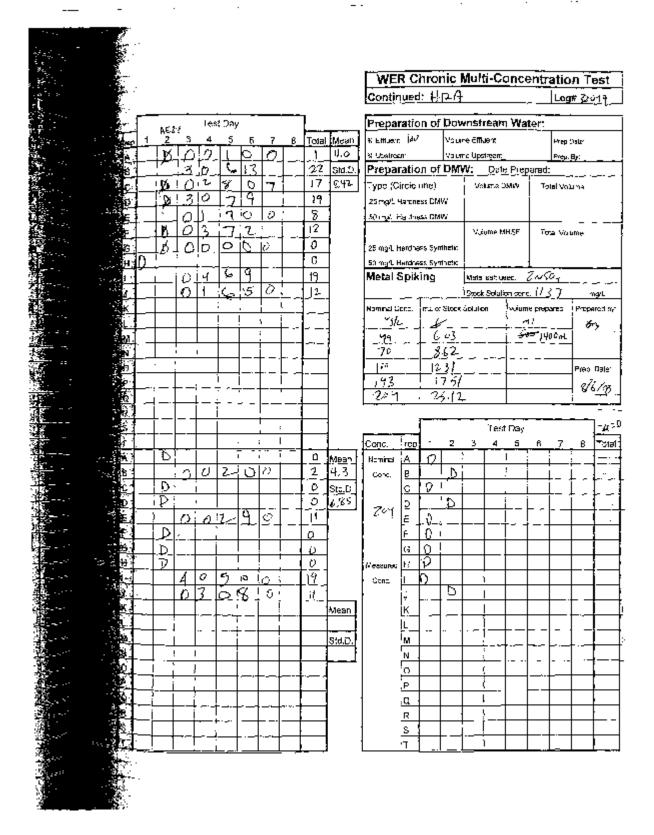
The 7Q10 upstream flow is 0 mgd = 0 cfs.

The default upstream zinc concentration to be used 0 mg/L.

Using the formula above, the Predicted Average Site Specific Limit is 0.168 mg/L Zn.

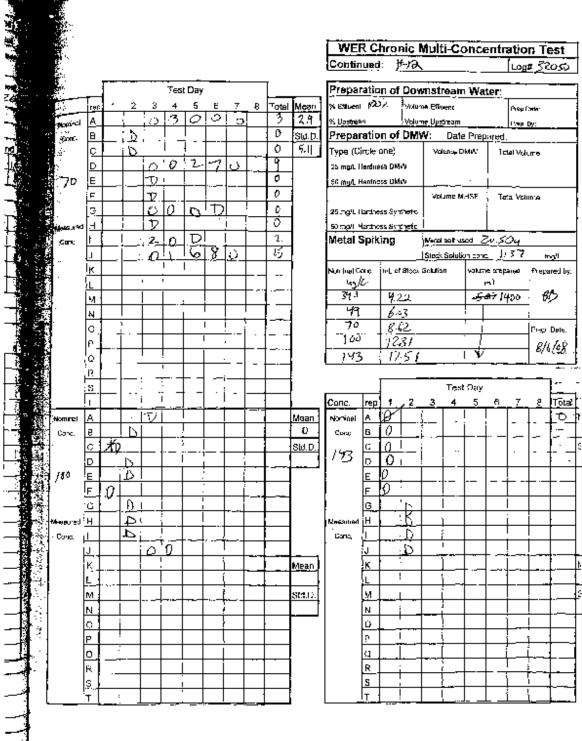
6.0 Conclusion

If a full chronic Water Effect Ratio for Zinc is conducted, it is predicted that the new **average** permit limit will be **0.122 mg/L** for untreated H-12 effluent and **0.168 mg/L** for DOC treated effluent. As compared to the current permit limit of 0.100 mg/L, it may be predicted that a Zinc WER will raise permit limits for untreated effluent. However, a Zinc WER will be more effective to raise permit limits if the effluent is


treated with DOC. SCDHEC has the authority to arbitrarily reduce the limit based upon their determination of "what is needed".

Attachment

Bench Sheets for Screening WER


					Tee	: Day				I		WER	R Chr	onic	: Mul	lti-C	once	entra	ation	
			.,	3	4	. Day k	6	7	в	Total	Meen	Client: 0		_	_			_	Matsu	
Nominal	A TEP		<u> </u>	<u>م</u> ا	12	ТЪ	iq.	Ī		17	21.0	Sample I			r Dowi	n stre s	unn (ska	e croj	Upendal	
Canc	'B			5	10	5	11			20	Stc.D.	Star1 Dat		648	ĒD	d Date	$_{\rm c}$ eII)	shos	1	ġ.
	_			1Ă	ิน	10	10	111		25	4.52	Start Tim		140			א _{מ:} 153		E ⁴ State	ţ.
0	_ع: ت	<u> </u>	<u></u> +−-	Á	+5	18	43	<u>; </u>		25	<u> </u>	Slatted P				ded B	- n -		3204	Ŀ
ug/L	E		<u>+</u>	2		· · ·	50	12	!	23			7. 17.7						- <u></u>	Į.
				3	. 0	- 1	.9	; <u> </u>		20	1	· -	Trs	at Ora	ລຸກເຮັກ	- Cari	odaph	nla ɗ	ubla	
	<u>'</u> ''			5	-	÷	τö	30	i	13	1	- · Neonatei					ween			1
Meering	ΥĒ			17	: 5	<u></u>	18			71	1	Rinces	A1 B		к ¦ D.L			16.0		
	. <u></u> 1			5		<u>+ (</u>	<u>.</u> '~	÷—	: 	[z2	1	707-25	د ارسا	<u> </u>	k V.		15-7	10,1	12	
00%0	ŕ,			ť'n	· 6	¦Ϋ	$\cdot \sigma$:13		28	1	(companyaria		/ -		<u> </u>	50.000 °	 Leondiel	i	٠.
	.к Л			+		<u> </u>	<u>, ~~</u> .	1		<u> </u>	1	C-pendare			r Renc					
	<u>500</u>		<u>+</u> ·	<u>+</u> -	7	1		i			1	Day	ol.	1			н <u>а</u> () 4) б		·	I.
	M			\vdash	İ	†		ľ			1	fed	ゴ	7.	37	<u> </u>	NV	i ŀ	<u> </u>	ŧ
			}—·-	1-	\top	†	1				1	renew	1.1	777	17	Ŵ	177	177		ł
	N. S			+		\vdash	!	İ				time	10	is h	451683	2(171)	140	140	1	1
	≦ ″i ЧI			\uparrow	\top	\uparrow	1	ľ			1	Init	100		10/10		1	1		Ŧ
	ic i		†— ·	1	\square	\square	İ				1	Incubato		/			1	1		t
	R			\square	\top	\square	1				1	D'LTOT was		s and (or	n haichar	in segme	nie maai	7 Na.		
	5		İ	\square	\top	\square	1			†	i		ſ				д Пау	_		T
	μ Iγ		<u>-</u>	t-	\square		1				;	Соле.	repl	1	23	4	5	б	7 .	4
Nemeral	A		ľ	1 N	†	5	10	¥		13	Mean	Nomina	IA I		10	:3	8	.o	ੀਲੀ	P
				3	Þ	-	à			ti § 1	25.4		B		13	0	17	`լշ.	: :	12
	°C			17	15	10	[O	12		2.5	Stc.D.		101	\top	77	$\langle \bar{\mathcal{V}} \rangle$	5	.q	· · ·	1
92	12		İ	14	0	9	9	İ		22	4.70	1 70	0		77	1.3	i6	8		
94				0	10	S.	į.a	1—		24		70	E		-+-2	;:5	8	<u>a</u> .	Î J	J
	1.5		ь	10	14	8	10	10		22	1			·	10	ंग		7		T
	ic i		i	tõ	†	ΙŸ	١٩	×		18	1		la Ì		10)•5	7	٦ <u>ק</u> -		1
Measured	i—	<u> </u> ·	۲	5	6	8	0	17		26	Į	Newsgred			3	10	je .	18		
Conc.				6	5	1-7	0	l it		23 T	1	Cane		1	Ťõ	- 9 - 9	ΤÇ	<u>ن</u> .	ৰি [1
				0	13	10	16	10	f ^ -	13	1				3	10	8	ंभ	<u>-</u> T	ľ
	ĸ			1		·					меал		K	-	·· ···	:	; -		: T	
	<u>; - 1</u>		I I		\vdash	\square					t 1					:			: A	U. – L
	M			1	\top	<u>†</u> -	1	۲ <i>-</i> ۱	f ·	1	Stc.D.		M		!	1_7-7	1	i.	, ÷	*
	IN I	111	!	\uparrow	1	\square	1	11	F -	t			N	İ	i		;			1
			İ	\uparrow	†	1	1.		Γ-	t 1			0		-÷ -	2		!	ĪΤ	
	t ^{`~…} ∶P			\uparrow	+	†·-··	†.—-		İ		1	•	P	\top		İ	!		<u> </u>	
	ja Ja			†	<u>.</u>	1-	i I				1			-	·	1		1		1
				t -		1	:	i I		1	1		[-	ł					5
	s			\uparrow		†— -) 		·	t	1		8	\top	<u> </u>	1				1
	т			†- ·	·	:	į · -	<u>. </u>	!	t	1		т	+	<u></u>			<u>г</u>	ΓŤ	j
fani zo utor		6 Nu: 15-	<u>ь</u>	<u>i</u> Si venas		. 0-0575	с. 15 Т	ers boar		in series	⊐ #502 X=⊲		_	<u></u>		k ng 24	n <u>e -</u> 4.	<u> </u>		1
Comme	nts;			ومتعسن			100	. <u></u>	- 212	لأشرر التريم										
																				1
																				_
Tost Vie	the set	Leta	(Zurida		. DA.	етт) <u>н</u>	100.0	e .			Resuts	D							

>

		<u> </u>								7										
	· · ·				Tes	it Day				Ļ.,		WE			NÎC I	Muji	ij-Ço	onc	entr	щġ
	reo	1	2	- 3.	4	5	5	7	5		Mean	Client: (<u>/2 (</u>	· · · ·			
Vominal	<u>^</u>		!	10	6	18	0	44	<u>. </u>	43	<u>14.5</u>	Sample	ID:	DM	V of C)own	strea	uni (ein	le orej	Uni
Cone.	凰		Ļ	13	0	8	Щ	┶━	!	20	Std.D.	Start Da		8/6	69	End	Date		3/3	L
	<u>c</u>	.	ļ	<u>in</u>	3	10	6	LLL.	: 	32.	7,20	Start Tir	na:	190		End	Tīme	: ľ	30	Etta
δ.	D	L.	L.	0	13	4	9			18		Started	8 <u>y:</u>	66		End	ed By	: 34	5	_34
O _{waft}	LE_			10	12	8	0	<u>10</u>		20						_				
	F			0	'প	18	11		i	23]			lest (rgan	ism:	Ceric	dapt	inia d	ubjes
	G	[0	5	:4	: 7		1	21]	Neonata							170	_
leastred	ξĤ	[<u> </u>	0	3	ÌÝ	40	ł		24		Blocks	A.I	B	с,к	<u>, </u>	E,M	T - '	ig.o	ΗР
Cana	ST.		10	 						οX	Ì	1/25-7/0		5.0	60	Vie	U,	57	Ta.	Ė,
	iJ		†	n	:3	in.	12	t	1	22	1	7emperatur	24.//	70 -	nd: 151		n de rece	50-100/	l-Sond -	3
	ix i	r	<u>†</u> -	10	1	† r	1				1						_		eding	
			!	\uparrow	1	\top					1	Day	0	1	2	1	4	5	E	7
	с. М	· · ·	<u>}</u>	<u>+</u>	1	\square					1	fed	Ŵ	TŻ	V	1	1	Ī	や	
	R.	r	•~-• !	!	+	+-	۱	1	•••		1	renew	X	11	Ľ⁄.	1	レ	17	セ	Γ,
	0	<u> </u>		~_~ `	-	┢╼┙	 	- - -		· · ·	1	time	1Ż	112	1491	6827	010	1112	4433	
	P	F	h	• !	†~~	†		!			1	ind.	The second	265	1.27		A17	17	13	┝╼┨
	<u>c</u>	-			:	;	1	:				Incubat		<u>10 107</u>				ᠳ	7-	
	19 - 18		<u> </u>			<u>+</u>	+					Cition wa					••••			-
	9 15		~~~	t~~		<u>†</u>	÷	İ				C31000 M3			.090.0	12-721		t ⊐ay	u.	
	T			\vdash	<u>:</u>		}	·				Conc.	reo	f 1	2	3	4	. ⊃ay 5	в	7
	A.			0	4	Ŷ	10	12		28	Mean		A	┼╾┶╼	┍╩╸		1		ò	(2)
	.е ¦в		ŀ	0	3 4	ι.	वि	┍╍╘		19	10.6	Nominal					20	10	iq	
Conc			-	0	4	5	0	11		22		Conc.	8			$\frac{1}{2}$	u u	5	0	
43				10	2		Ĭ			22	<u>Std.D.</u> 2.50		C		·	$\frac{c}{c}$	5	6	17	
	0 _			1 A	4	17	0	11		23	-130	199				<u> </u>	5	5		-
	F				3	÷₽-	10	<u></u>		19		! ' '		-	L	D.		17	15	
	F.			<u>i 0</u>	<u> </u>	느윽	<u> </u>		-	16			F	-	i	1	\vdash	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	12	
	e.	ŀ^		<u>0</u>	12-	-+	<u>8</u> 9		<u>.</u>	13			<u> G</u>			0	<u> ५</u> ५	<u>\5</u>		
essured	μ-			0.			19			-		Measured	<u>.</u>				<u>}</u>] <u>}</u>	-+
Cono	⊬			<u>, ź</u>	<u></u>	8				21		Conc	·I			0	<u>_</u>	16	2	+
	님			0	<u>-1</u>	18	j <u>o</u>)0)		12			<u>.</u>			0	1	<u>.</u> &		—ł
	ĸ			<u> </u>	<u> </u>	<u> </u>	<u> </u>		~ -		Mean	ļ	الا				┝╾╼╴	 -		
	卢			┟╼╍	ᢥᠴᠵ	┝━					··		┢╧┯╸							
	24	~		h	<u> </u>	┝╌╍					Std.D.	ł	м	-	<u>.</u>					-
	<u>'N</u> _				. 	<u> </u>							N						· ·	+
	D			.								t	0						~ _	{
	Р											ł	P				L			
	5					L				·			<u>a</u> .	 _						i
	3				<u> </u>								R							
	<u>s</u>			L									s							
	Г												т							
		18 18 18 18	L Tes	: vesse	ls: 1_c2_	plaster	ape T	al Linen	d rajadkaj	niçeri per	50P. X= de	et organism	L-Insi.	erg milar	אופרי] יי	ter val a	m=00	mi		
יטמורוס	nts:															_				
~																				
					<u> </u>													_~_		
		1				DA 0	22 0	.9 4 .0(11			Results i	.	li leveran	Dar					

t

...

SRNS-STI-2009-00012, Revision 0 Page 17 of 57

Appendix B

H-12 WER Sample Metal Analysis

(Environmental/Bioassay Laboratory)

Savannah River Site's Analytical Laboratories Environmental/Bioassay Laboratory

NPDES CERTIFICATE OF ANALYSIS

SC DHEC Certification: 02550001 QC/QA Officer: Jay Hutchison, Jr.

Signature: _____

 Bldg 735-B
 Tech Support: Robin Utsey
 Signature: _____

Customer ID:	H-12	WER		s	RS Sample ID: 0880153	100 Labor	ratory ID: 2000905	07 % Liquids: 100
Collection Lo	cation:	MISCELLAN	EOUS ON-SIT	Samp	ole Collection Date 09/0	9/2008 Samp	le Collection Time	12:00 AM
Analyst: Ro	bin Utse	ý		Extractio	on Date: 09/24/2008	Extra	ction Time: 11:00 A	M
Analyte		Result	PQL	Units	Extraction Method:	Analysis Method:	Analysis Date	Analysis Time
Са		2.3617	0.25	mg/L	EPA200.8	EPA200.8	09/24/2008	11:57 AM
Cu	<	0.0250	0.025	mg/L	EPA200.8	EPA200.8	09/24/2008	11:57 AM
к		0.6688	0.03	mg/L	EPA200.8	EPA200.8	09/24/2008	11:57 AM
Mg		0.3095	0.25	mg/L	EPA200.8	EPA200.8	09/24/2008	11:57 AM
Na		9.9021	0.15	mg/L	EPA200.8	EPA200.8	09/24/2008	11:57 AM

SRNS-STI-2009-00012, Revision 0 Page 19 of 57

Appendix C.

Report on Recalculation Procedure for Zinc: NPDES Outfall H-12

(864) 877-6942 . FAX (864) 877-6938

P.O. Box 16414, Greenville, SC 29606

Craftsman Court, Greer, SC 29650

RECALCULATION PROCEDURE for ZINC

NPDES Outfall H-12

Conducted for Westinghouse Savannah River Company Contract # 383922N

> August 2007 Amended 1/9/08 (Rev. 4)

TABLE OF CONTENTS

	Page
1.0	IntroductionC3
2.0	Site DescriptionC4
	MapC5
3.0	Determination of Species Present at Site
4.0	Corrections to National Dataset
5.0	Additions to National Dataset
6.0	Deletions from National DatasetC12
7.0	Minimum Data RequirementsC12
8.0	Calculation of FAV and FCVC14
9.0	Calculation of Site Specific CMC and CCCC14
10.0	Calculation of Site Specific Limits for Zinc for Outfall H-12C15

Appendix A. National DataSet for Zinc

Appendix B. Deletion Process

Appendix C. Site Specific Data Set and Calculations of FAV and FCV

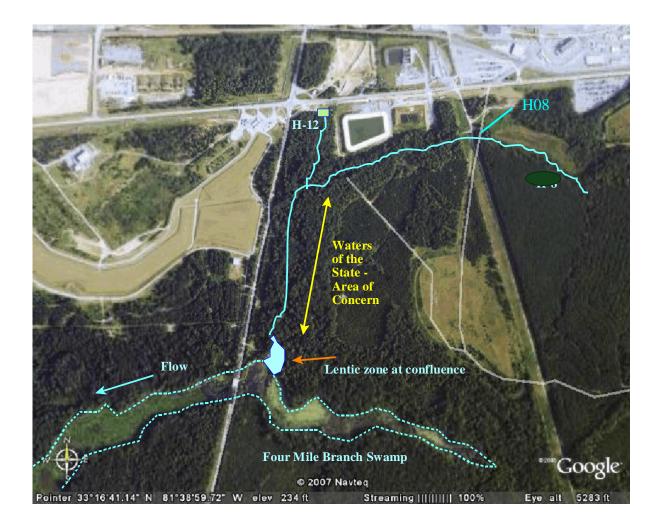
Appendix D. EPA Recalculation Procedure Protocol

1.0 Introduction

As permitted under the NPDES permit, a *Recalculation Procedure* was conducted for Zinc at WSRC Outfall H-12. The methodology used included *Interim Guidance on Determination and Use of Water-Effect Ratios for Metals* (EPA-823-B-94-001 Appendix B) and *Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses* by Stephan et al.

2.0 Site Description

Outfall H-12 is located near the junction of Road 4 and Road E at the Savannah River Site. It flows south for approximately 750 ft where it merges with the unnamed tributary that also receives from the H-08 outfall and originates approximately 2/3 mile ESE of the H-12 Outfall. The unnamed tributary is a water of the state. The combined stream flows freely for a distance of about 1500 feet to where it enters a swampy lentic zone, which forms an extension of the Four Mile Branch (FMB) swamp. For the purposes of this study, this area is not considered to be part of the stream. Four Mile Branch is a second-order stream with a low flow of approximately 1.5


cfs.

The upper sections of the H-12/H-08 stream reach are deeply eroded, with a largely hardclay stream bed (Figure 1). There are no rocks but the stream bed is littered with chunks of hard clay forming continuous riffle. The depth is only a few inches and the width of the stream is about ten feet. The steep banks are 10-15 feet high, at the top of which deciduous forest

predominates. Near the point at which the stream reaches the swamp, the stream cuts less deeply into the ground and the height of the banks decreases to only 3-5 feet. In this section there is some silt benthic habitat and a slower flow.

SRNS-STI-2009-00012, Revision 0 AERIAL VIEW OF SITE

3.0 Determination of Species Present at the Site

According to the *Recalculation Procedure*, all species in the National Database for a particular metal which occur at a site must be retained in the list. Species which occur at a site are defined as 1) species which are usually present at the site, 2) species present only seasonally, 3) species present intermittently due to range fluctuations, 4) species known to be present in the past but are no longer present due to habitat degradation, and 5) species present in nearby bodies of water and would be expected to be present in the absence of habitat degradation.

Studies of the aquatic fauna, both fish and aquatic macroinvertebrates, have been conducted.

The following species of fish were collected in the stream during sampling in September 2005 (data provided by Michael Paller of WSRC).

Family Cyprinidae	Nocomis leptocephalus Notemigonus chrysoleucas Notropis lutipinnis	Bluehead Chub Golden Shiner Yellowfin Shiner
Family Ictaluridae	Ameiurus natalis Noturus insignis Noturus leptacanthus	Yellow bullhead Margined Madtom Speckled Madtom
Family Esocidae	Esox americanus Esox niger	Redfin Pickerel Chain Pickerel
Family Aphredoderidae	Aphredoderus sayanus	Pirate Perch
Family Centrarchidae	Lepomis auritus Lepomis gulosus Lepomis punctatus	Redbreast Sunfish Warmouth Spotted Sunfish

In addition to the species actually collected in the stream, there are a number of species collected in Four Mile Branch which might also might be expected to occur in the stream or might have occurred in the stream in the past. These species include;

Family Anguillidae	Anguilla rostrata	American Eel
Family Cyprinidae	Notropis cummingsae Notropis hudsonius Notropis petersoni Pteronotropis hypselopterus Semotilus atromaculatus	Dusky Shiner Spottail Shiner Coastal Shiner Sailfin Shiner Creek Chub
Family Catostomidae	Erimyzon oblongus Minytrema melanops	Creek Chubsucker Spotted Sucker
Family Percidae	Etheostoma olmstedi Percina nigrofasciata	Tessellated Darter Blackbanded Darter

The following species of aquatic macroinvertebrates were collected in the stream during sampling on June 2007 (sampling by ETT Environmental, Inc.).

Order Trichoptera (Caddisflies) Hydropsyche betteni Order Megaloptera (Hellgrammites) Nigronia serricornis Order Coleoptera (Beetles) Dineutus sp. (whirligig beetle) Stenelmis sinuata (elmid beetle) Order Diptera Ablabesmyia mallochi (midge) Chironomus sp. (midge)

<u>Order Diptera (cont'd)</u> Labrundinia pilosella (midge) Limnophila sp. (crane fly) Meropelopia sp. (midge) Paratendipes albimanus (midge) Phaenopsectra flavipes (midge) Rheotanytarsus exiguus gp. (midge) Stenochironomus sp. (midge) Tipulidae (cranefly pupa)

It was evident from the sample collection that the stream is currently supportive of only a reduced diversity of aquatic macroinvertebrates. One reason is undoubtably the hard clay benthic substrate which is not conducive to macroinvertebrate colonization. In addition to the species actually collected in the stream, there are numerous taxa of aquatic macroinvertebrates which would be expected in a stream of this size at the Savannah River Site. Some of the expected taxa would include;

Mayflies	Family	Baetidae	genera;			
Acentrella, Acerpenna, Baetis, Pseudocloeon						
Mayflies		Ephemerellidae	genera;			
Ephemerella, I	Eurylophel	la	-			
Mayflies	Family	Heptageniidae	genera;			
Stenonema, Ste	Stenonema, Stenacron					
Mayflies	Family	Isonychiiidae	genera;	Isonychia		
Stoneflies	Family	Capniidae	genera;			
Allocapnia						
Stoneflies	Family	Leuctridae	genera;	Lecutra		
Stoneflies	Family	Nemouridae	genera;	Shipsa		
Stoneflies	Family	Perlidae	genera;			
Acroneuria, Pa	ıragnetina					
Stoneflies	Family	Perlodidae	genera;			
Clioperla, Isop	ela					
Stoneflies Family Taeniopterygidae genera;				genera;		
Taeni	opteryx					
			lies	Family		
			ceratidae	genera;		
		Hetropi	lectron			
Caddisflies	2	Hydroptilidae	genera;			
Hydroptila, Ochrotrichia						
Caddisflies	•	Hydropychidae	genera;			
Cheumatopsyc						
Caddisflies	Family	Leptoceridae	genera;	Oecetis,		
Triaenodes						
Caddisflies Family Lepidostomatidae genera;						
	ETT: 08/07					

	SRNS-S11-2009-00012, Revision 0				
Lepido	stoma				
Caddisflies	Family Limnephilidae	genera;			
Pycnopsyche					
Caddisflies	Family Philopotamidae	genera; Chimarra			
Caddisflies Family Polycentropodidae genera;					
•	entropus				
Caddis	2	omatidae genera:			
Agaroa					
Hellgrammites	Family Corydalidae	genera; Nigronia,			
Corydalus					
Damselflies	Family Coenagrionidae	genera;			
Enallagma, Arg	ia				
Damselflies	Family Calopterygidae	genera;			
Calopteryx					
Dragonflies	Family Aeshnidae	genera; Boyeria			
Dragonflies	Family Gomphidae	genera;			
Gomphus, Ophi	ogomphus, Progomphus	-			
True Bugs	Family Gerridae	genera; Gerris			
True Bugs	Family Veliidae	genera;			
Rhagovelia	5	8 ,			
Beetles	Family Dytiscidae	genera;			
Hydroporus,		8			
Beetles	Family Elmidae	genera;			
	iraphia, Macronychus, Ster				
Beetles	Family Gyrinidae	genera; Dineutus			
Beetles	Family Hydrophilidae	genera;			
Sperchopsis	r anny rrydrophilidae	genera,			
Flies	Family Ceratopo	gonidae genera;			
	• •	goindae genera,			
Flies	Palpomyia Family Chironomidae	conora			
		genera;			
	onchapelopia gp., Labrund				
	Brillia, Corynoneura, Cricotopus, Eukiefferiella,				
Nanocladius, Orthocladius, Parametriocnemus,					
	adius, Orthocladius, Paran	ietriocnemus,			
Rheocr	adius, Orthocladius, Paran icotopus, Thienemanniella,	ietriocnemus, Tvetenia,			
Rheocr Unniel	adius, Orthocladius, Paran icotopus, Thienemanniella, la, Cryptochironomus, Dicr	ietriocnemus, Tvetenia, rotendipes,			
Rheocr Unniel Polype	adius, Orthocladius, Paran icotopus, Thienemanniella, la, Cryptochironomus, Dicr dilum, Stenochironomus, Ti	ietriocnemus, Tvetenia, rotendipes,			
Rheocr Unniel Polype Rheota	ladius, Orthocladius, Paran icotopus, Thienemanniella, la, Cryptochironomus, Dicr dilum, Stenochironomus, Tr nytarsus, Tanytarsus	netriocnemus, Tvetenia, rotendipes, ribelos			
Rheocr Unniel Polype	adius, Orthocladius, Paran icotopus, Thienemanniella, la, Cryptochironomus, Dicr dilum, Stenochironomus, Tr nytarsus, Tanytarsus Family Naididae	ietriocnemus, Tvetenia, rotendipes,			
Rheocr Unniel Polype Rheota Worms	ladius, Orthocladius, Paran icotopus, Thienemanniella, la, Cryptochironomus, Dicr dilum, Stenochironomus, Tr nytarsus, Tanytarsus	netriocnemus, Tvetenia, rotendipes, ribelos			
Rheocr Unniel Polype Rheota Worms Peloscolex	ladius, Orthocladius, Paran icotopus, Thienemanniella, la, Cryptochironomus, Dicr dilum, Stenochironomus, Tr nytarsus, Tanytarsus Family Naididae Family Tubificidae	netriocnemus, Tvetenia, rotendipes, ribelos genera; Nais			
Rheocr Unniel Polype Rheota Worms Peloscolex Snails	adius, Orthocladius, Paran icotopus, Thienemanniella, la, Cryptochironomus, Dicr dilum, Stenochironomus, Tr nytarsus, Tanytarsus Family Naididae Family Tubificidae Family Menetidae	netriocnemus, Tvetenia, rotendipes, ribelos genera; Nais			
Rheocr Unniel Polype Rheota Worms Peloscolex	adius, Orthocladius, Paran icotopus, Thienemanniella, la, Cryptochironomus, Dicr dilum, Stenochironomus, Tr nytarsus, Tanytarsus Family Naididae Family Tubificidae Family Menetidae	netriocnemus, Tvetenia, sotendipes, ribelos genera; Nais genera;			
Rheocr Unniel Polype Rheota Worms Peloscolex Snails	adius, Orthocladius, Paran icotopus, Thienemanniella, la, Cryptochironomus, Dicr dilum, Stenochironomus, Tr nytarsus, Tanytarsus Family Naididae Family Tubificidae Family Menetidae	netriocnemus, Tvetenia, rotendipes, ribelos genera; Nais genera; genera; Crustaceans			
Rheocr Unniel Polype Rheota Worms Peloscolex Snails	adius, Orthocladius, Paran icotopus, Thienemanniella, la, Cryptochironomus, Dicr dilum, Stenochironomus, Tr nytarsus, Tanytarsus Family Naididae Family Tubificidae Family Menetidae	netriocnemus, Tvetenia, rotendipes, ribelos genera; Nais genera; genera; Crustaceans Family			
Rheocr Unniel Polype Rheota Worms Peloscolex Snails	adius, Orthocladius, Paran icotopus, Thienemanniella, la, Cryptochironomus, Dicr dilum, Stenochironomus, Tr nytarsus, Tanytarsus Family Naididae Family Tubificidae Family Menetidae	netriocnemus, Tvetenia, rotendipes, ribelos genera; Nais genera; genera; Crustaceans Family Decapoda			
Rheocr Unniel Polype Rheota Worms Peloscolex Snails	adius, Orthocladius, Paran icotopus, Thienemanniella, la, Cryptochironomus, Dicr dilum, Stenochironomus, Tr nytarsus, Tanytarsus Family Naididae Family Tubificidae Family Menetidae	netriocnemus, Tvetenia, rotendipes, ribelos genera; Nais genera; genera; Crustaceans Family Decapoda genera;			
Rheocr Unniel Polype Rheota Worms Peloscolex Snails	adius, Orthocladius, Paran icotopus, Thienemanniella, la, Cryptochironomus, Dicr dilum, Stenochironomus, Tr nytarsus, Tanytarsus Family Naididae Family Tubificidae Family Menetidae	netriocnemus, Tvetenia, rotendipes, rotendipes, ribelos genera; Nais genera; genera; Crustaceans Family Decapoda genera; <i>Cambarus,</i>			
Rheocr Unniel Polype Rheota Worms Peloscolex Snails	adius, Orthocladius, Paran icotopus, Thienemanniella, la, Cryptochironomus, Dicr dilum, Stenochironomus, Tr nytarsus, Tanytarsus Family Naididae Family Tubificidae Family Menetidae	netriocnemus, Tvetenia, rotendipes, rotendipes, ribelos genera; Nais genera; genera; Crustaceans Family Decapoda genera; Cambarus, Procambarus			
Rheocr Unniel Polype Rheota Worms Peloscolex Snails	adius, Orthocladius, Paran icotopus, Thienemanniella, la, Cryptochironomus, Dicr dilum, Stenochironomus, Tr nytarsus, Tanytarsus Family Naididae Family Tubificidae Family Menetidae	netriocnemus, Tvetenia, rotendipes, rotendipes, ribelos genera; Nais genera; genera; Crustaceans Family Decapoda genera; <i>Cambarus,</i>			

SRNS-STI-2009-00012, Revision 0

The following comments are provided with regard to species in the National Dataset and their potential for being present at the site;

Daphnidae	the daphnids in t be found in a le species in the nat found only in the <i>Daphnia pulex</i> is or Southeast, 3) northern species. to be present in <i>Daphnia ambig</i> H12/H08 stream	which are not naturally present in this stream. Among he national dataset only <i>Ceriodaphnia reticulata</i> might ntic habitat at the Savannah River Site. Of the other ional dataset it may be noted that 1) <i>Daphnia magna</i> is e north and midwest - associated with harder water, 2) s found in the north and west but not the Ohio Valley <i>Ceriodaphnia dubia (=affinis)</i> is generally a more . Species of <i>Daphnia</i> which are or would be expected a lentic habitats at the Savannah River Site include <i>twa, Daphnia catawba</i> , and <i>Daphnia laevis</i> . The does not have the type of lentic habitat which would r the presence of daphnids- therefore daphnids are
Morone saxatilis	Striped enter small stream	Bass Not present. A coastal species that does not
Agosia chrysogaster	Longfin Dace	Not present. Occurs in Arizona.
Oreochromis mossambica Tilapia		tive species.
Salmonidae	Trout,Sa	-
	present. Salmoni	ds are cold-water fish and do not occur in the lower
		bastal Plain of South Carolina.
Limnodrilus hoffmeisteri	Worm in this stream.	Widespread in distribution and expected to be found
Pectinatella magnifica	Bryozoan	Not present. A northern species
Physella heterostropha	Snail	Expected to be present in the stream.
Physella gyrina	Snail	Widespread in distribution. Not reported
	from Savannah F	
Helisoma campanulatum	Snail	Not present. A northern species. = <i>Planorbula</i> .
Plumatella rostrata	Bryozoan	Status undetermined.
Jordanella floridae	Flagfish	Not present. Found only in Florida.
Lophopodella carteri	Bryozoan	Reported only from the northern United States and
	Canada	
Lirceus alabamae	Isopod	Not present. Not known from the Savannah
	River Site.	-
Pimephales promelas	Fathead	Not present. A northern and midwest species
Minnow		-
Xiphophorus maculates	Southern	Not present. Not found at the Savannah River Site. Platyfish
Corbicula fluminea	Asiatic Clam	Non-native species. Present at site.
Catostomus commersonii	White Sucker	Not present. Not found at Savannah River Site.
Notemigonus crysoleucas	Golden Shiner	This species has been collected in the stream.
Poecilia reticulata	Guppy	Non-native species.
Ptychocheilus oregonensis Northern	117	•
	A	Pikeminnow. Not present. Found in NW North
Cyprinus carpio	America Carp	Non-native species
Gammaridae	Amphip	There are no species of Gammarus present
H-12 Recalculation Zn		ETT: 08/07

SRNS-STI-2009-00012, Revision 0

	at the site, although species of the closely related Crangonyx are likely								
	present, or may have been in the past.								
Caecidotea sp.	Isopod This genus likely occurs in the stream.								
	bicrenata occurs in the Tennessee Valley.								
Lumbriculus variegatus	Worm Widespread. Likely found at site.								
Carassius auratus	Goldfish Non-native species.								
Lepomis macrochirus	Bluegill Likely to be present at the site.								
Lepomis gibbosus	Pumpkinseed Likely to be present at site.								
Anguilla rostrata	American Eel Found in Four Mile Branch. May enter the								
	site.								
Amnicola sp. Snail	Amnicola limosus likely to be present at site.								
Fundulus diaphanus	Banded Killifish. Not present. Not found in Savannah River Drainage								
Nais sp.	Worm Species in this genus may be								
	present.								
Crangonyx pseudogracilis Amphipod	Not present. A northern species.								
Argia sp.	Damselfly The species Argia sedula occurs in the								
	stream.								
Xenopus laevis	African Clawed Frog Not present. Introduced in SW US								

4.0 Corrections to the National Dataset

A listing of the National Dataset is provided in Appendix A (Includes 1995 Update). No corrections to the National Dataset are made in this Recalculation Procedure.

5.0 Additions to the National Dataset

No additions to the National Dataset are made in this Recalculation Procedure.

6.0 Deletions from the National Dataset

Based upon the deletion process as described in the *Recalculation Procedure*, the following species are deleted from the National Dataset (See Appendix B);

Daphnid	Cerio
Daphnid	Cerio
Daphnid	Dapł
Daphnid	Dapl
Chinook Salmon	Onch
Sockeye Salmon	Onch
•	Coho
	Onch
Rainbow Trout	Onch
Atlantic Salmon	Salm
Snail	Phys
Tilapia	Oreo
Brook Trout	Salve
White Sucker	Cato

Ceriodaphnia reticulata Ceriodaphnia dubia Daphnia pulex Daphnia magna Onchorhynchus tshawytscha Onchorhynchus nerka Coho Salmon Onchorhynchus kisutch Onchorhynchus mykiss Salmo salar Physella gyrina Oreochromis mozambica Salvelinus fontinalus Catostomus commersonii Lophopodella carteri

7.0 Minimum Data Requirements

The primary Minimum Data Requirement is that after the Deletion Process there must be at least eight families of aquatic invertebrates, amphibians, and fishes at the site. In this Recalculation Procedure there were 12 families of aquatic invertebrates retained and 5 families of fishes after the deletion process was completed.

Bryozoan

There are additional requirements regarding the eight families needed for the Minimum Data Requirement. These additional requirements include,

A. The Family Salmonidae must be included

B. A second family of Osteichthyes (bony fish) must be included - preferably a commercially important species.

- C. A third family in Phylum Chordata must be included.
- D. A planktonic crustacean must be included
- E. A benthic crustacean must be included

H-12 Recalculation Zn

F. An aquatic insect must be included

G. A family in a phylum other than Arthropoda or Chordata must be included

H. A second aquatic insect family or another Phylum not represented in the other 7 families.

Each of these requirements are addressed as follows;

A. Family Salmonidae

There are no species of the family (or the Order Salmoniformes) which occur or would be expected to occur at the site. However, there are species in the same class (Osteichthyes) in the National Dataset, and there are more than three families of Osteichthyes. Therefore one of the other families of Osteichthyes can substitute - for example Ictaluridae.

- B. Second Family of OsteichthyesThere are five families of bony fish.
- C. Third Family of Chordates There are five families of fish.
- D. A Planktonic Crustacean.

This requirement is inappropriate for an aquatic site without lentic habitat. Because no species in the Order Cladocera are found at the site, a species in the same class (Crustacea) can substitute - for example *Gammarus sp.* (Amphipod).

E. Benthic Crustacean

The amphipod species Crangonyx pseudogracilis fulfills the requirement.

F. Aquatic Insect

The damselfly species Argia sp. fulfills the requirement.

G. A Family in A Phylum Other Than Arthropoda or Chordata

H-12 Recalculation Zn

The bryozoan species *Plumatella rostrata* fulfills the requirement.

H. A Second Insect Family or a Family in Another Phylum

The worm species Lumbriculus variegatus (Phylum Annelida) fulfills the requirement.

8.0 Calculation of Final Acute Value (FAV) and Final Chronic Value (FCV)

Calculations are shown in Appendix D. The four genera with the lowest GMAV values were; Morone, Agosia, Physa, and Limnodrilus.

Using the Site Specific Dataset, the new FAV is 178.9406 ug/L Zn.

Using the Site Specific Dataset, the new FCV is calculated by dividing the Site Specific FAV by the FACR (Final Acute-Chronic Ratio) of 2.0 (the national value). The calculated FCV is 89.4703 ug/L Zn.

9.0 Calculation of Site Specific CMC and Site Specific CCC

Calculations are shown in Appendix D.

The new Site Specific CMC is calculated as one-half of the	CMC = 89.4703 ug/L Zn
FAV but must be adjusted for the site hardness	(at a hardness of 50 mg/L).
	= 49.7297 ug/L Zn

The new Site Specific CCC is the same as the FCV

(At a hardness of 25 mg/L)

CCC = 89.4703 ug/LZn (at a hardness of 50 mg/L). = 49.7297 ug/L Zn(At a hardness of 25 mg/L)

The CCC=CMC, therefore only the CMC is used.

10.0 Calculation of Site Specific Limits for Zinc for Outfall H-12

Using the *Technical Guidance on Interpretation and Implementation of Aquatic Life Metals Criteria* (October 1993) and Technical Guidance Manual for Performing Waste Load Allocations Book II, Rivers and Streams (EPA/440/484/022) the Site Specific Limits for zinc can be calculated to take into account the partitioning of the metal in dissolved versus total form.

The calculations use the following input data.

CCC (Site Specific) = 49.7297 ug/L Zn (25 mg/L hardness) CMC (Site Specific) = 49.7297 ug/L Zn (25 mg/L hardness) DF₁ = 1.0 CF_{CCC} = 98.6 CF_{CMC} = 97.8 $k_{po} = 1.25 \text{ x } 10^6$ Background TSS = 1 mg/L Effluent TSS = 6 mg/L (from upcoming NPDES 2C Application data) a = -0.7038

The final limits are as follows;

Site Specific Maximum Zinc Limit: 153.2 ug/L

APPENDIX A (for recalculation procedure report) National Dataset for Zinc

CLARIT Web Print: 820B96001 Water Quality Criteria Documents for the Protectio... Page 105 of 114

1995 UPDATE:

Freshwater Aquatic Life Chiterion for Zinc

The new acceptable acute data for zinc are given in Table Ol; no new acceptable chronic data were found. These data were used with those given in Tables 1 and 2 of the criteria document for zinc (U.S. EPA 1987) to obtain the values given in Table 02. Because the toxicity of zinc is hardness-dependent, all acute values in Table 02 have been adjusted to a hardness of S0 mg/L.

Criterion Maximum Concentration (CMC)

The Final Acute Value (FAV) was calculated using the four lowest Genus Mean Acute Values in Table 02, resulting in an FAV of 133.2 ug/L at a hardness of 50 mg/L. This value did not need to be lowered to protect a commercially or recreationally important species. The CMC was calculated by dividing the FAV by 2, resulting in a CMC of 66.6 ug/L, as total recoverable zinc, at a hardness of 50 mg/L. The CMC was related to hardness using the slope of 0.8473 that was derived in U.S. EFA (1987):

> 0:8473 (in hardness) + 0.884 CMC = e

Criterion Continuous Concentration (CCC)

Insufficient chronic toxicity data were available to calculate a Final Chronic Value (FCV) using the eight-family procedure. . Sufficient chronic data were available to calculate a FCV by dividing the FAV by the Final Acute-Chronic Ratio (FACR). SMACRS were available for seven species (Table 02). but three were for resistant species and one was a "less than" value. The other three were within a factor of 10.4. The FACR was calculated as the geometric mean of the three SMACRs and was 1.994. According to the methodology, the FACR cannot be less than 2. The FCV -FAV/FACR = (133.2 ug/L)/(2) = 66.6 ug/L at a hardness of 50 mg/L. This value did not need to be lowered to protect a commerciallyor recreationally important species. Thus the CCC was 66.6 ug/L. as total recoverable zinc, at a hardness of 50 mg/L and equals the CMC. The CCC was related to hardness using the slope of 0.8473:

 $CCC = e^{0.8473(\ln herdness) + 0.884}$

- 1

http://www.epa.gov/cgi-bin/clprint?Range=All&StartPage=1&EndPage=114&Res=72&Print... 6/24/03

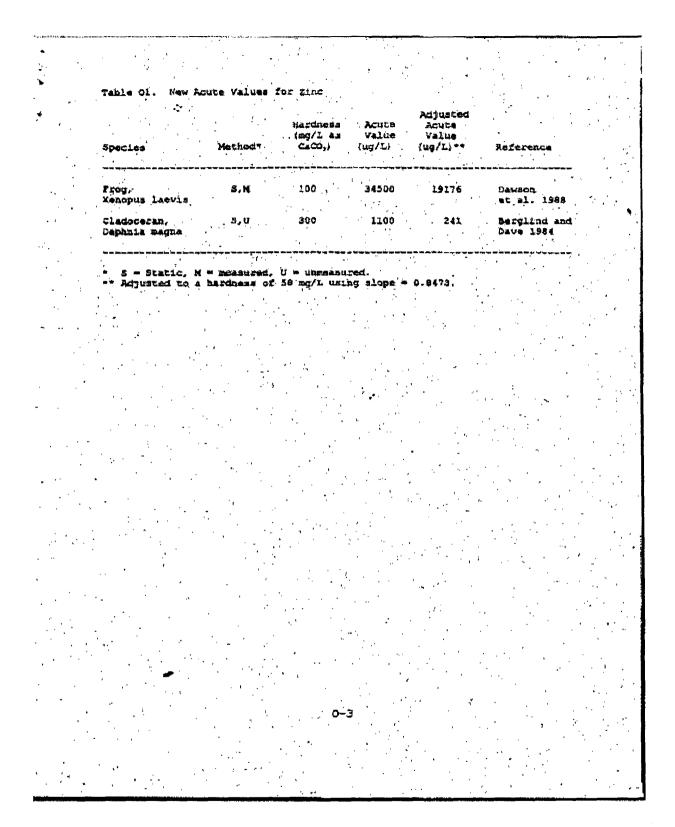
% %

% % CLARIT Web Print: 820B96001 Water Quality Criteria Documents for the Protectio... Page 106 of 114

When it equals the CMC, the CCC is irrelevant because the CMC has a shorter averaging period.

The Criterion

The procedures described in the methodology indicate that, except possibly where a locally important species is very sensitive, freshwater aquatic organisms should not be affected unacceptably if the one-hour average concentration of zinc does not exceed the numerical value (in ug/L) given by the equation


0.8473 (ln hardness) + 0.884

more than once every three years on the average.

http://www.epa.gov/cgi-bin/clprint?Range=All&StartPage=1&EndPage=114&Res=72&Print... 6/24/03

3

CLARIT Web Print: 820B96001 Water Quality Criteria Documents for the Protectio... Page 107 of 114

http://www.epa.gov/cgi-bin/clprint?Range=All&StartPage=1&EndPage=114&Res=72&Print... 6/24/03

CLARIT Web Print: 820B96001 Water Quality Criteria Documents for the Protectio... Page 108 of 114

				,
Table 0	9 Protest c.			·
		aus Mean Acute Values for Zinc	5, '	· •
•			· ·	• , .
	Genus Mean Acute Value		Species Mean	Species Mean
Rank	{ug/L) **	Species	Wente Asine	Acute-Chronic
			(ug/L)** ·	. Ratio
		کو، بای میں بید بید بید بید اس میں اس کی اپنے میں کہ شہر اپنے پیل کی کہ اس میں بی اپنے اپنے میں میں بی اپنے اپن او	- محمد محمد البلية الفلاء العلم الحية ، في التي الفلاء العلم منها التي ال	. المواجد في في خد جو وي الم الم
36	83560	Damael Cly,	88960	
		Argia sp.		
32	19900	Amphipod,	19800	
	•	Crangonyx pseudogracilis	19440	
34	19176	Frog.		
		Xenopus laevis	19176	
33	18400	Worm,	· ·	•
		Naig ep.	19400	~~~ ~
32	17940	Banded killifish.		
		Fundulus disphanus	17940	······
31	16820	•	•	
	19420	Spail, Asmicola sp.	16820	
0e	19504			
20	13530	American cel, Anguilla rostrata	13630	* ******
29	10560	Pumpkinsand,	10790	an an antaga ag
	6	Lepomis gibbosus	· .	
		Bluegill,	5937	
	*	Leponia macrochirus		
28	10250	Goldfish,	10250	19 19 19 19 19 19
	,	Carassius Auratus		
27	9712	Worm,	9712	
		Lumbriculus variegatus		-
26	8157	Isepod,	5731	
		Asellus bicrenate	519T	
		Xaobod.	· · · ·	
		Asellus compunis	11410	
25	8100	Amphipod,		· · .
		Germarus ap.	8180	The latter reportings range
24			, ·	
	r -=	Cosmon carp, Cyprisus carpio	7233	
23				۰.
		Northern squawfish, Plyzhocheilus oregonensis	6380	***
12		•		
	15053	Guppy, Poscilia reticulata	6053	
		╸╸╸┈╾╾┶╺╗╴╺┥╪┍┿╔┽╢╋╠╋		· ,
		0-4	•	· · ·
		· .	· . ·	

http://www.epa.gov/cgi-bin/clprint?Range=All&StartPage=1&EndPage=114&Res=72&Print... 6/24/03

1

9675-898-3795

01/08/2008 JC:34

CLARIT Web Print: 820B96001 Water Quality Criteria Documents for the Protectio... Page 109 of 114

1979 See See States 23 Aver States States and an approximation of the manual of the providence of the second st		
· · · · · · · · · · · · · · · · · · ·	•••	
*		
Table 02	(Cont.)	
	4.74 . 1 · · ·	
• •	Gabus Mean	
	Acute Value	Species Mean Species Mean
Rank*	(ug/L) **	ACULE VELUE ACULUMACULUM
		Species (ug/L)** Ratio
	مربق میشود این ورد این می می می می این این این این این این این این این ای	
. • • • [*]		
- 21	5000	Golden shiher, 6000
		Notamigonus crysoleucas
, ·	. •	
20	5228	White sucker, 5228
		Catostomus commersoni
主義"。	4900	Asiatic clam, 4900
	· ,	Corbicula flumines
10	4341	Southern platyfish, 4341
· · · · · · · · · · · · · · · · · · ·	· , ·	Xiphophorus maculatus
17	****	
3L 8	3830	Fathead minnew, 3830 5.644***
· · · · · · · · ·		Pimephales promelas
16	3265	Transation in the second second second second second second second second second second second second second se
		Teopod, 3265
	4	ALLOWUM ALADERIA
- 13	2176	Atlantic salmon, 2175
•		Atlantic salmon, 2175
14	2100	Brook troat, 2100 2.335***
· · · · · · · · · · · · · · · · · · ·		Salvelinus Iontinalia
13	1707	Bryozoan, 1787
		Lophopodella casteri
12		
1	1672	Flagfish, 1672 41.2***
· · · · · · · · · · · · · · · · · · ·	·	Jordanalla floridas
11	1.507	aryozoen, 1607
		Aryozoen, 1607
		FACTORIE TRAIGIDER
10	1578	Shail, 1578
		Helisons campanulatum
	· · ·	
<u>ج</u>	1353	Smatl, 1683
	•	Physe gyrine
•	•	
· · · · ·		Smil. 1988
	. · · .	Physe heterostropha
8	1307	Bryotcan, 1307
· · · ·		Bryoscan, 1307
n fe e	• •	FTH THERE THE ARE STREND ALL ALL ALL ALL ALL ALL ALL ALL ALL AL
7	>1264	Tubificid worm, 91264
		Limodrilus hoffmeisteri
· - ·	<u>-</u> +	
	•	
	4	0-5
	· .	
	•	
Mint 1 1		

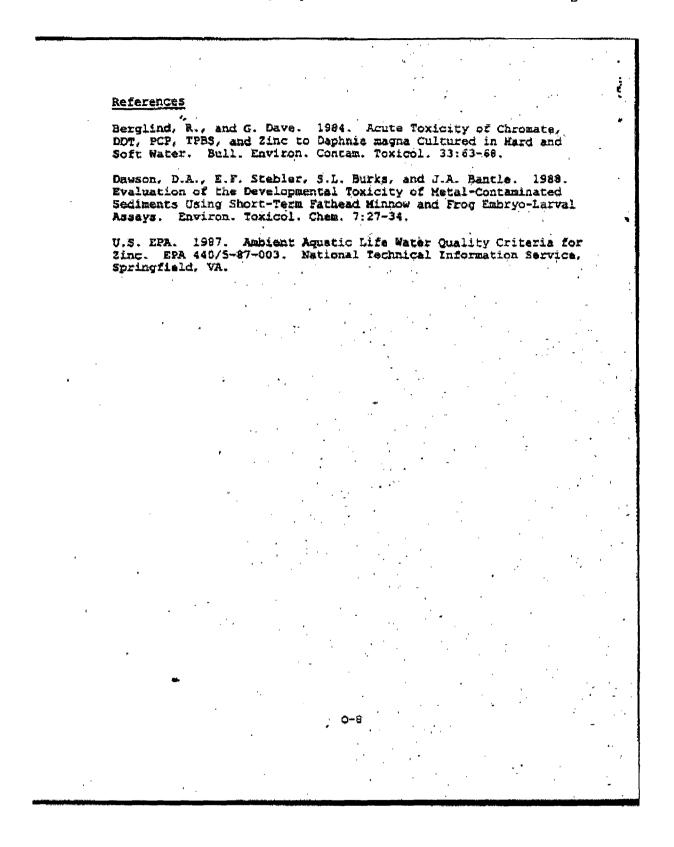
http://www.epa.gov/cgi-bin/clprint?Range=All&StartPage=1&EndPage=114&Res=72&Print... 6/24/03

.

CLARIT Web Print: 820B96001 Water Quality Criteria Documents for the Protectio... Page 110 of 114

		,	.	-	۰.
		,	,		•
Table C	2. (Cont.)				
		· . · ·	•		•
	_ `		1. State 1.		
	Gonus Mean	•	Special Mean	Species Mean	
Rank*	Acute Value (ug/L) **	O handa	ACUES VALUE	The second second second second second second second second second second second second second second second s	
	(M (M) = 4	Species /	(ug/L)**	Ratio	•
	**************************************			•	
			· · · · · · · · · · · · · · · · · · ·		
6	931.3	Rainbow trout,	689.3	I.334	۰.
	,	Oncochynchus mykiss			
		Coho salmon.		• '	
		Oncerhynchus kisutch	1628		•••
				· ·	•
		Sockeys salmon,	1302		+
		Oncorhynchus nerka			
		Chimook salmon,		· · · · · · · · · · · · · · · · · · ·	,
		Oncorhynchus tahawytacha	446.4	0.7027	
5	790		· · · ·	•	·
-	790	Mozambique tilapia, Tilapia mogsambica	790		
		sevence whereauthe			
4	299.8	cladocesan,	355.5	7.26	
		Dephnia megna		1.49	•
			•		
		Cladoceran. Dephnia pulex	- 252.9		
		Networke Bares		· ·	
3	227.8	Longfin dace,	227.8	*	
		Agosia chrysogaster	227.8		
2	119.4			`	
. –	. 117.4	Striped bass. Morone saxatilis	119.4	tere environ tere and the	•
1	93.95	Cladoceran,	174.1	<u></u> .	
		Ceriodaphnia dubia		·	
		Cladocuran,	. –	•	
		Ceriodaphnia Seticulate	50.70	·	
نىيە 100 مىل بىلە بىلە بىلە ب ە بىلەتلەت.	ین پیچ کے پر ان انہ کا کا کا پر جن		· · · · · · · · · · · · · · · · · · ·		
+ Bank	the from mouth		•		
		resistant to most sensiti	ve based og Genus N	ean Acute	
** At 1	andinesa = 50 ;	mg/L_		<u> </u>	
*** Not	used in the c	alculation of the Final A	Cuco-Chronic Racia.		
				*	
			-	۰.	
					•
	sa ⇔ 50 ma/L:				
At herdge:	s≠ = \$8 mg/L;			. •	
At herdge	ss = 50 mg/L: 133.2 ug/L			, •	
At hardne: RAV = ;	133.2 Lg/L				
At hardne: RAV = ;	•	1 3/L		· · ·	
At herdge ZAV = : CHC = ;	133.2 Lg/L PAV/2 = 66.6 1			· · · ·	•
At herdge ZAV = : CHC = ;	133.2 Lg/L		· · · · · ·		• •
At herdge EAV = : CHC = ;	133.2 Lg/L PAV/2 = 66.6 1		· · · · · · · · · · · · · · · · · · ·	· · · · ·	•
At herdge EAV = : CHC = ;	133.2 Lg/L PAV/2 = 66.6 1		•	· · · · ·	•
At herdge EAV = : CHC = ;	133.2 Lg/L PAV/2 = 66.6 1			· · · · · ·	•
At herdge EAV = : CHC = ;	133.2 Lg/L PAV/2 = 66.6 1			· · · · ·	•
At herdge EAV = : CHC = ;	133.2 Lg/L PAV/2 = 66.6 1				•
At herdge EAV = : CHC = ;	133.2 Lg/L PAV/2 = 66.6 1				•

http://www.epa.gov/cgi-bin/clprint?Range=All&StartPage=1&EndPage=114&Res=72&Print... 6/24/03


4

.

۰. ب 0.8473/lb hardmassi + D.884 CHC but was calend to 2 FROM 1.994 At hardness # .50 mg/Li > FAV/FACR = (133.2 ug/L)/(2) = 65.6 ug/L = CCC FCVλs a function of hardness: 0.8473 (ln handnes:

http://www.epa.gov/cgi-bin/clprint?Range=All&StartPage=1&EndPage=114&Res=72&Print... 6/24/03

CLARIT Web Print: 820B96001 Water Quality Criteria Documents for the Protectio... Page 112 of 114

http://www.epa.gov/cgi-bin/clprint?Range=All&StartPage=1&EndPage=114&Res=72&Print... 6/24/03

APPENDIX B (for recalculation procedure report)

Deletion Process

Rec	alculation Procedure - Derivation of GMAV, F	AV, FCV, CMC	, and CCC														
	al - Zinc - WSRC Outfall H-12																
Site																	
				Present	Oco	curren	ce at	Site		Retained/	GMAV		GMAV With				
Rank	Phylum Class Order Family	Genus	species	Site?	Genus	Family	Order	Class	Status	Deleted	Genera	Rank	Deletions	Р	sqrt P	In GMAV	In GMAV ²
36	Arthropoda Insecta Odonata Coenagrionidae	Argia	sp.	present	yes	yes	yes	yes		R	88960	28	88960	0.9655			
35	Arthropoda Crustacea Amphipoda Crangonyctidae	Crangonyx	pseudogracilis	absent	yes	yes	yes	yes	species in same genus present	R	19800	27	19800	0.9310			
34	Chordata Amphibia Anura Pipidae	Xenopus	laevis	absent	no	no	yes	yes	species in same order preent	R	19176	26	18400	0.8966			
33	Annelida Oligochaeta Tubificida Naididae	Nais	sp.	present	yes	yes	yes	yes		R	18400	25	18400	0.8621			
32	Chordata Osteichthyes Cyprinodontiformes Fundulidae	Fundulus	diaphanus	absent	yes	yes	yes	yes	species in same genus present	R	17940	24	17940	0.8276			
31	Mollusca Gastropoda Mesogastropoda Hydrobiidae	Amnicola	sp.	present	yes	yes	yes	yes		R	16820	23	16820	0.7931			
30	Chordata Osteichthyes Anguilliformes Anguillidae	Anguilla	rostrata	present	yes	yes	yes	yes		R	13630	22	13630	0.7586			
29b	Chordata Osteichthyes Perciformes Centrarchidae	Lepomis	gibbosus	present	yes	yes	yes	yes		R							
29a	Chordata Osteichthyes Perciformes Centrarchidae	Lepomis	macrochirus	present	yes	yes	yes	yes		R	10560	21	10560	0.7241			
28	Chordata Osteichthyes Cypriniformes Cyprinidae	Carassius	auratus	absent	no	yes	yes	yes	genera in same family present	R	10250	20	10250	0.6897			
27	Annelida Oligochaeta Lumbriculida Lumbriculidae	Lumbriculus	variegatus	present	yes	yes	yes	yes		R	9712	19	9712	0.6552			
26b	Arthropoda Crustacea Isopoda Asellidae	Caecidotea	bicrenata	absent	yes	yes	yes	yes	species in same genus present	R							L
26a	Arthropoda Crustacea Isopoda Asellidae	Caecidotea	communis	absent	yes	yes	yes	yes	species in same genus present	R	8157	18	8157	0.6207			
25	Arthropoda Crustacea Amphipoda Gammaridae	Gammarus	sp.	absent	no	no	yes	yes	order present not in dataset	R	8100	17	8100	0.5862			
24	Chordata Osteichthyes Cypriniformes Cyprinidae	Cyprinus	carpio	absent	no	yes	yes	yes	genera in the family present	R	7233	16	7233	0.5517			
23	Chordata Osteichthyes Cypriniformes Cyprinidae	Ptychocheilus	oregonensis	absent	no	yes	yes	yes	genera present not in dataset	R	6580	15	6580	0.5172			l
22	Chordata Osteichthyes Cyprinodontiformes Poeciliidae	Poecilia	reticulata	absent	no	no	no	yes	species in family present	R	6053	14	6053	0.4828			
21	Chordata Osteichthyes Cypriniformes Cyprinidae	Notemigonus	crysoleucas	present	yes	yes	yes	yes		R	6000	13	6000	0.4483			
20	Chordata Osteichthyes Cypriniformes Catostomidae	Catostomus	commersonii	absent	no	no	yes	yes	genera in the order present	R	5228						
19	Mollusca Bivalvia Veneroida Corbiculidae	Corbicula	fluminea	present	yes	yes	yes	yes		R	4900	12	4900	0.4138			
18	Chordata Osteichthyes Cyprinodontiformes Poeciliidae	Xiphophorus	maculatus	absent	no	yes	yes	yes	genera in the family present	R	4341	11	4341	0.3793			
17	Chordata Osteichthyes Cypriniformes Cyprinidae	Pimephales	promelas	absent	no	yes	yes	yes	genera in same family present	R	3830	10	3830	0.3448			
16	Arthropoda Crustacea Isopoda Asellidae	Lirceus	alabamae	absent	yes	yes	yes	yes	species in same genus present	R	3265	9	3265	0.3103			
15	Chordata Osteichthyes Salmoniformes Salmonidae	Salmo	salar	absent	no	no	no	yes	species in same class present	D	2176						
14	Chordata Osteichthyes Salmoniformes Salmonidae	Salvelinus	fontinalis	absent	no	no	no	yes	species in same genus present	D	2100						
13	Bryozoa Phylactolaemata Plumatellida Lophopodidae	Lophopodella	carteri	absent	no	no	yes	yes	species in same order present	D	1707						
12	Chordata Osteichthyes Cyprinodontiformes Cyprinodontidae	Jordanella	floridae	absent	no	no	no	yes	species in family present	R	1672	8	1372	0.2759			
11	Bryozoa Phylactolaemata Plumatellida Plumatellidae	Plumatella	rostrata	absent	yes	yes	yes	yes	species in same genus present	R	1607	7	1607	0.2414			

H-12 Recalculation Zn

								1	1					1		1	1	1				
10	Mollusca G	astropoda	Limnophila	Planorbi	dae		Helisoma	campanulatum	absent	no	yes	yes	yes	genera in same family present	R	1578	6	1578	0.2069			
9b	Mollusca G	astropoda	Limnophila	Physida			Physa	gyrina	absent	yes	yes	yes	yes	species in same order present	D	1683						
8	Bryozoa Pl	Bryozoa Phylactolaemata Plumatellida Pectinatellidae		idae	Pectinatella	magnifica	absent	no	no	yes	yes	species in same family present	R	1307	5	1307	0.1724	sqrt P	In GMAV	In GMAV ²		
7	Annelida C	ligochaeta	Tubificida '	Fubificida	e		Limnodrilus	hoffmeisteri	present	yes	yes	yes	yes		R	1264	4	1264	0.1379	0.371	7.1420	51.00869
9a	Mollusca G	astropoda	Limnophila	Physida			Physa	acuta	present	yes	yes	yes	yes		R	1088	3	1088	0.1034	0.322	6.9921	48.88941
6d	Chordata C)steichthye	s Salmonif	ormes Sa	almonid	ae	Onchorhynchus	mykiss gairdneri	absent	no	no	no	yes	species in same class present	D							
6c	Chordata C)steichthye	s Salmonif	ormes S	almonid	ae	Onchorhynchus	kisutch	absent	no	no	no	yes	species in same class present	D							
6b	Chordata C)steichthye	s Salmonif	ormes S	almonid	ae	Onchorhynchus	nerka	absent	no	no	no	yes	species in same class present	D							
6a	Chordata C)steichthye	s Salmonif	ormes Sa	almonid	ae	Onchorhynchus	tschawytscha	absent	no	no	no	yes	species in same class present	D	931.3						
5	Chordata Osteichthyes Perciformes Cichlidae			Tilapia	mossambica	absent	no	no	yes	yes	species in same order present	D	790									
4b	Arthropoda Crustacea Cladocera Daphnidae			Daphnia	magna	absent	no	no	no	yes	species in same class present	D										
4a	Arthropoda Crustacea Cladocera Daphnidae			Daphnia	pulex	absent	no	no	no	yes	species in same class present	D	299.8									
3	Chordata Osteichthyes Cypriniformes Cyprinidae		е	Agosia	chrysogaster	absent	no	yes	no	yes	genera in same family present	R	227.8	2	227.8	0.0690	0.263	5.4285	29.46827			
2	Chordata C)steichthye	s Perciforn	nes Moro	nidae		Morone	saxatilis	absent	no	no	yes	yes	order present not in dataset	R	119.4	1	119.4	0.0345	0.186	4.7825	22.87211
1b	Arthropoda	a Crustace:	a Cladocera	a Daphni	dae		Ceriodaphnia	dubia	absent	no	no	no	yes	species in same class present	D							
1a	Arthropoda	a Crustace	a Cladocera	a Daphni	dae		Ceriodaphnia	reticulata	absent	no	no	no	yes	species in same class present	D							
										Genus	Family	Order	Class						sum	sum	sum	sum
	FAV Calcu	lations					FCV Calculations												0.3448	1.141	24.3451	152.2385
	S ² =	212.2202	S =	14.56	78																	
	L =	1.9296																				
	A =	5.1871					FACR =								2	national	value					
	FAV =	178.9406					FCV =								89.4703							
	CMC =	89.4703	at hardne:	ss of 50	mg/L		CCC =								89.4703	at hardr	ness of	50 mg/L				
	CMC =	49.7297	at hardne:	ss of 25	mgÆ		CCC =								49.7297	at hardr	ness of	25 mg/L				

APPENDIX C (for recalculation procedure report)

Site Specific Dataset and Calculations of FAV and FCV

Metal:	Zinc										
Outfall:	WSRC H	H12									
				Calculate	alculated Values						
Input Para	neters			C _d =	48.635647	=SxCF fo					
S=	49.7297	= CCC		Cd=	49.033484	=SxCF fo	r CCC				
S=	49.7297	= CMC		K _{pb} =	1250000	= Kpo x (TS	x (TSSb) ^a				
CF=	0.986	from Table f	or CCC	WQSal =	110.32534	= Adjusted	1 Water Qua	Water Quality Standard (Co			
CF=	0.978	from Table f	or CMC	WQSal =	109.4302	= Adjusted	1 Water Qua	(CMC)			
Kpo =	1250000	from Table									
TSSb =	1	eff. average		TSSarg=	6						
TSSe =	6	eff. average		Kp=	354198.86						
a=	-0.7038	from Table		Ct=	153.23911	for CCC					
upst flow=	0.0%			Ct=	151.99579	for CMC					
eff flow=	100.0%										
DF1 =	1			Caqlife =	153.24	ug/L	Maximum e	effluent limit			
Cb =	0	background	0000	Caqlife =	152.00	nal	A vero de et	fluent limit			

APPENDIX D (for recalculation procedure report)

EPA Recalculation Procedure Protocol

Appendix B: The Recalculation Procedure

NOTE: The National Toxics Rule (NTR) does not allow use of the Recalculation Procedure in the derivation of a sitespecific criterion. Thus nothing in this appendix applies to jurisdictions that are subject to the NTR.

The Recalculation Procedure is intended to cause a site-specific criterion to appropriately differ from a national aquatic life criterion if justified by demonstrated pertinent toxicological differences between the aquatic species that occur at the site and those that were used in the derivation of the national criterion. There are at least three reasons why such differences might exist between the two sets of species. First, the national dataset contains aquatic species that are sensitive to many pollutants, but these and comparably sensitive species might not occur at the site. Second, a species that is critical at the site might be sensitive to the pollutant and require a lower (A critical species is a species that is commercially criterion. or recreationally important at the site, a species that exists at the site and is listed as threatened or endangered under section 4 of the Endangered Species Act, or a species for which there is evidence that the loss of the species from the site is likely to cause an unacceptable impact on a commercially or recreationally important species, a threatened or endangered species, the abundances of a variety of other species, or the structure or function of the community.) Third, the species that occur at the site might represent a narrower mix of species than those in the national dataset due to a limited range of natural environmental conditions. The procedure presented here is structured so that corrections and additions can be made to the national dataset without the deletion process being used to take into account taxa that do and do not occur at the site; in effect, this procedure makes it possible to update the national aquatic life criterion.

The phrase "occur at the site" includes the species, genera, families, orders, classes, and phyla that:

- a. are usually present at the site.
- b. are present at the site only seasonally due to migration.
- c. are present intermittently because they periodically return to or extend their ranges into the site.
- d. were present at the site in the past, are not currently present at the site due to degraded conditions, and are expected to return to the site when conditions improve.
- e. are present in nearby bodies of water, are not currently present at the site due to degraded conditions, and are expected to be present at the site when conditions improve.
 The taxa that "occur at the site" cannot be determined merely by sampling downstream and/or upstream of the site at one point in time. "Occur at the site" does not include taxa that were once

present at the site but cannot exist at the site now due to permanent physical alteration of the habitat at the site resulting from dams, etc.

The definition of the "site" can be extremely important when using the Recalculation Procedure. For example, the number of taxa that occur at the site will generally decrease as the size of the site decreases. Also, if the site is defined to be very small, the permit limit might be controlled by a criterion that applies outside (e.g., downstream of) the site.

- Note: If the variety of aquatic invertebrates, amphibians, and fishes is so limited that species in <u>fewer than eight</u> <u>families</u> occur at the site, the general Recalculation Procedure is not applicable and the following special version of the Recalculation Procedure **must** be used: 1. Data **must** be available for at least one species in
 - each of the families that occur at the site.
 - 2. The lowest Species Mean Acute Value that is available for a species that occurs at the site **must** be used as the FAV.
 - 3. The site-specific CMC and CCC **must** be calculated as described below in part 2 of step E, which is titled "Determination of the CMC and/or CCC".

The concept of the Recalculation Procedure is to create a dataset that is appropriate for deriving a site-specific criterion by modifying the national dataset in some or all of three ways:

- a. Correction of data that are in the national dataset.
- b. Addition of data to the national dataset.
- c. Deletion of data that are in the national dataset.

All corrections and additions that have been approved by U.S. EPA are required, whereas use of the deletion process is optional. The Recalculation Procedure is more likely to result in lowering a criterion if the net result of addition and deletion is to decrease the number of genera in the dataset, whereas the procedure is more likely to result in raising a criterion if the net result of addition and deletion is to increase the number of genera in the dataset.

The Recalculation Procedure consists of the following steps: A. Corrections are made in the national dataset.

- B. Additions are made to the national dataset.
- C. The deletion process may be applied if desired.
- D. If the new dataset does not satisfy the applicable Minimum Data Requirements (MDRs), additional pertinent data **must** be generated; if the new data are approved by the U.S. EPA, the Recalculation Procedure **must** be started again at step B with the addition of the new data.
- E. The new CMC or CCC or both are determined.
- F. A report is written.

Each step is discussed in more detail below.

A. Corrections

- 1. Only corrections approved by the U.S. EPA may be made.
- 2. The concept of "correction" includes removal of data that should not have been in the national dataset in the first place. The concept of "correction" does not include removal of a datum from the national dataset just because the quality of the datum is claimed to be suspect. If additional data are available for the same species, the U.S. EPA will decide which data should be used, based on the available guidance (U.S. EPA 1985); also, data based on measured concentrations are usually preferable to those based on nominal concentrations.
- 3. Two kinds of corrections are possible:
 - a. The first includes those corrections that are known to and have been approved by the U.S. EPA; a list of these will be available from the U.S. EPA.
 - b. The second includes those corrections that are submitted to the U.S. EPA for approval. If approved, these will be added to EPA's list of approved corrections.
- 4. Selective corrections are not allowed. All corrections on EPA's newest list must be made.

B. Additions

- 1. Only additions approved by the U.S. EPA may be made.
- 2. Two kinds of additions are possible:
 - a. The first includes those additions that are known to and have been approved by the U.S. EPA; a list of these will be available from the U.S. EPA.
 - b. The second includes those additions that are submitted to the U.S. EPA for approval. If approved, these will be added to EPA's list of approved additions.
- 3. Selective additions are not allowed. All additions on EPA's newest list **must** be made.

C. The Deletion Process

The basic principles are:

- 1. Additions and corrections **must** be made as per steps A and B above, before the deletion process is performed.
- 2. Selective deletions are not allowed. If any species is to be deleted, the deletion process described below must be applied to all species in the national dataset, after any necessary corrections and additions have been made to the national dataset. The deletion process specifies which species must be deleted and which species must not be deleted. Use of the deletion process is optional, but no deletions are optional when the deletion process is used.
- 3. Comprehensive information **must** be available concerning what species occur at the site; a species cannot be deleted based

on incomplete information concerning the species that do and do not satisfy the definition of "occur at the site".

- 4. Data might have to be generated <u>before</u> the deletion process is begun:
 - a. Acceptable pertinent toxicological data **must** be available for at least one species in each <u>class</u> of aquatic plants, invertebrates, amphibians, and fish that contains a species that is a critical species at the site.
 - b. For each aquatic plant, invertebrate, amphibian, and fish species that occurs at the site and is listed as threatened or endangered under section 4 of the Endangered Species Act, data must be available or be generated for an acceptable surrogate species. Data for each surrogate species must be used as if they are data for species that occur at the site.

If additional data are generated using acceptable procedures (U.S. EPA 1985) and they are approved by the U.S. EPA, the Recalculation Procedure **must** be started again at step B with the addition of the new data.

- 5. Data might have to be generated <u>after</u> the deletion process is completed. Even if one or more species are deleted, there still are MDRs (see step D below) that **must** be satisfied. If the data remaining after deletion do not satisfy the applicable MDRs, additional toxicity tests **must** be conducted using acceptable procedures (U.S. EPA 1985) so that all MDRs are satisfied. If the new data are approved by the U.S. EPA, the Recalculation Procedure **must** be started again at step B with the addition of new data.
- 6. Chronic tests do not have to be conducted because the national Final Acute-Chronic Ratio (FACR) may be used in the derivation of the site-specific Final Chronic Value (FCV). If acutechronic ratios (ACRs) are available or are generated so that the chronic MDRs are satisfied using only species that occur at the site, a site-specific FACR may be derived and used in place of the national FACR. Because a FACR was not used in the derivation of the freshwater CCC for cadmium, this CCC can only be modified the same way as a FAV; what is acceptable will depend on which species are deleted.

If any species are to be deleted, the following deletion process **must** be applied:

- a. Obtain a copy of the national dataset, i.e., tables 1, 2, and 3 in the national criteria document (see Appendix E).
- b. Make corrections in and/or additions to the national dataset as described in steps A and B above.
- c. Group all the species in the dataset taxonomically by phylum, class, order, family, genus, and species.
- d. Circle each species that satisfies the definition of "occur at the site" as presented on the first page of this appendix, and including any data for species that are surrogates of threatened or endangered species that occur at the site.

e. Use the following step-wise process to determine which of the uncircled species must be deleted and which **must not** be deleted: 1. Does the genus occur at the site? If "No", go to step 2. If "Yes", are there one or more species in the genus that occur at the site but are not in the dataset? If "No", go to step 2. If "Yes", retain the uncircled species.* 2. Does the family occur at the site? If "No", go to step 3. If "Yes", are there one or more genera in the family that occur at the site but are not in the dataset? If "No", go to step 3. If "Yes", retain the uncircled species.* 3. Does the order occur at the site? If "No", go to step 4. If "Yes", does the dataset contain a circled species that is in the same order? If "No", retain the uncircled species.* If "Yes", delete the uncircled species.* 4. Does the class occur at the site? If "No", go to step 5. If "Yes", does the dataset contain a circled species that is in the same class? If "No", retain the uncircled species.* If "Yes", delete the uncircled species.* 5. Does the phylum occur at the site? If "No", delete the uncircled species.* If "Yes", does the dataset contain a circled species that is in the same phylum? If "No", retain the uncircled species.* If "Yes", delete the uncircled species.* * = Continue the deletion process by starting at step 1 for another uncircled species unless all uncircled species in the dataset have been considered. The species that are circled and those that are retained constitute the site-specific dataset. (An example of the deletion process is given in Figure B1.)

۰.

This deletion process is designed to ensure that: a. Each species that occurs both in the national dataset and at the site also occurs in the site-specific dataset.

- b. Each species that occurs at the site but does not occur in the national dataset is represented in the site-specific dataset by all species in the national dataset that are in the same genus.
- c. Each genus that occurs at the site but does not occur in the national dataset is represented in the site-specific dataset by <u>all</u> genera in the national dataset that are in the same family.
- d. Each order, class, and phylum that occurs both in the national dataset and at the site is represented in the site-specific dataset by the one or more species in the national dataset that are most closely related to a species that occurs at the site.

D. Checking the Minimum Data Requirements

The initial MDRs for the Recalculation Procedure are the same as those for the derivation of a national criterion. If a specific requirement cannot be satisfied after deletion because that kind Sodo of species does not occur at the site, a taxonomically similar inf have species must be substituted in order to meet the eight MDRs: to meet

MDRS m If no species of the kind required occurs at the site, but a species in the same order does, the MDR can only be satisfied National by data for a species that occurs at the site and is in that order; if no species in the order occurs at the site, but a species in the class does, the MDR can only be satisfied by data for a species that occurs at the site and is in that class. If no species in the same class occurs at the site, but a species in the phylum does, the MDR can only be satisfied by data for a species that occurs at the site and is in that phylum. If no species in the same phylum occurs at the site, any species that occurs at the site and is not used to satisfy a different MDR can be used to satisfy the MDR. If additional data are generated using acceptable procedures (U.S. EPA 1985) and they are approved by the U.S. EPA, the Recalculation Procedure must be started again at step B with the addition of the new data.

(ritigion

If fewer than eight families of aquatic invertebrates, amphibians, and fishes occur at the site, a Species Mean Acute Value must be available for at least one species in each of the families and the special version of the Recalculation Procedure described on the second page of this appendix must be used.

E. Determining the CMC and/or CCC

- 1. Determining the FAV:
 - a. If the eight family MDRs are satisfied, the site-specific FAV must be calculated from Genus Mean Acute Values using

the procedure described in the national aquatic life guidelines (U.S. EPA 1985).

- b. If fewer than eight families of aquatic invertebrates, amphibians, and fishes occur at the site, the lowest Species Mean Acute Value that is available for a species that occurs at the site **must** be used as the FAV, as per the special version of the Recalculation Procedure described on the second page of this appendix.
- 2. The site-specific CMC must be calculated by dividing the site-specific FAV by 2. The site-specific FCV must be calculated by dividing the site-specific FAV by the national FACR (or by a site-specific FACR if one is derived). (Because a FACR was not used to derive the national CCC for cadmium in fresh water, the site-specific CCC equals the site-specific FCV.)
- 3. The calculated FAV, CMC, and/or CCC must be lowered, if necessary, to (1) protect an aquatic plant, invertebrate, amphibian, or fish species that is a critical species at the site, and (2) ensure that the criterion is not likely to jeopardize the continued existence of any endangered or threatened species listed under section 4 of the Endangered Species Act or result in the destruction or adverse modification of such species' critical habitat.

F. Writing the Report

The report of the results of use of the Recalculation Procedure **must** include:

- 1. A list of all species of aquatic invertebrates, amphibians, and fishes that are known to "occur at the site", along with the source of the information.
- 2. A list of all aquatic plant, invertebrate, amphibian, and fish species that are critical species at the site, including all species that occur at the site and are listed as threatened or endangered under section 4 of the Endangered Species Act.
- 3. A site-specific version of Table 1 from a criteria document produced by the U.S. EPA after 1984.
- 4. A site-specific version of Table 3 from a criteria document produced by the U.S. EPA after 1984.
- 5. A list of all species that were deleted.
- 6. The new calculated FAV, CMC, and/or CCC.
- 7. The lowered FAV, CMC, and/or CCC, if one or more were lowered to protect a specific species.

Reference

U.S. EPA. 1985. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses. PB85-227049. National Technical Information Service, Springfield, VA.

Figure B1: An Example of the Deletion Process Using Three Phyla

SPECIES T	HAT ARE IN	THE THREE	PHYLA AND O	CCUR AT THE SITE
Phylum	<u>Class</u>	<u>Order</u>	Family	<u>Species</u>
Annelida Bryozoa Chordata Chordata Chordata Chordata Chordata Chordata Chordata Chordata	Hirudin. (No speci Osteich. Osteich. Osteich. Osteich. Osteich. Osteich. Amphibia	Rhynchob. es in this Cyprinif. Cyprinif. Cyprinif. Salmonif. Percifor. Percifor. Caudata	Glossiph. phylum occu Cyprinid. Cyprinid. Cyprinid. Catostom. Osmerida. Centrarc. Centrarc. Ambystom.	Glossip. complanata r at the site.) Carassius auratus Notropis anogenus Phoxinus eos Carpiodes carpio Osmerus mordax Lepomis cyanellus Lepomis humilis Ambystoma gracile

SPECIES T	HAT ARE IN	THE THREE	PHYLA AND I	N THE NATIONAL DATAS	SET
Phylum	<u>Class</u>	Order	Family	<u>Species</u>	<u>Code</u>
Annelida	Oligoch.	Haplotax.	Tubifici.	Tubifex tubifex	Р
Bryozoa	Phylact.		Lophopod.	Lophopod. carteri	D
Chordata	Cephala.	Petromyz.	Petromyz.	Petromyzon marinus	D
Chordata	Osteich.	Cyprinif.	Cyprinid.	Carassius auratus	S
Chordata	Osteich.	Cyprinif.	Cyprinid.	Notropis hudsonius	G
Chordata	Osteich.	Cyprinif.	Cyprinid.	Notropis stramineus	
Chordata	Osteich.	Cyprinif.	Cyprinid.	Phoxinus eos	S
Chordata	Osteich.	Cyprinif.	Cyprinid.	Phoxinus oreas	D
Chordata	Osteich.	Cyprinif.	Cyprinid.	Tinca tinca	D
Chordata	Osteich.	Cyprinif.	Catostom.	Ictiobus bubalus	F
Chordata	Osteich.	Salmonif.	Salmonid.	Oncorhynchus mykiss	5 O
Chordata	Osteich.	Percifor.	Centrarc.	Lepomis cyanellus	S
Chordata	Osteich.	Percifor.	Centrarc.	Lepomis macrochirus	s G
Chordata	Osteich.	Percifor.	Percidae	Perca flavescens	D
Chordata	Amphibia	Anura	Pipidae	Xenopus laevis	С
	-				

Explanations of Codes:

S = retained because this Species occurs at the site.

- G = retained because there is a species in this Genus that occurs at the site but not in the national dataset.
 - F = retained because there is a genus in this Family that occurs at the site but not in the national dataset.
 - 0 = retained because this Order occurs at the site and is not represented by a lower taxon.
 - C = retained because this Class occurs at the site and is not represented by a lower taxon.
 - P = retained because this Phylum occurs at the site and is not represented by a lower taxon.
 - D = deleted because this species does not satisfy any of the requirements for retaining species.