3,668 research outputs found

    Lunar mission aerobrake performance study

    Get PDF
    Nine lunar mission scenarios were developed to show the transfer vehicle performance benefits of aerobraking into low Earth orbit (LEO) upon Earth return as opposed to an all-propulsive maneuver. The initial mass in LEO (IMLEO) of the lunar transfer vehicle is considered the measure of vehicle performance. Four types of mission profiles in conjunction with two vehicle concepts were used to construct the scenarios. These nine scenarios were designed to represent a broad range of possible lunar missions so that a general knowledge base of aerobraking and lunar transfer vehicle performance levels could be obtained. Also discussed are the mass sensitivities of each transfer vehicle to changes in the selected design parameters: Isp, crew module mass, payload to surface, and aerobrake mass fraction. A parametric study was performed on two of the mission scenarios to help quantify the performance benefits by adding a set of drop tanks to the vehicle. The parametric study also provides partial derivatives which show the sensitivities of IMLEO to the four design parameters listed. A ranking is given based on vehicle performance

    Second Einstein Telescope Mock Science Challenge : Detection of the GW Stochastic Background from Compact Binary Coalescences

    Full text link
    We present the results of the search for an astrophysical gravitational-wave stochastic background during the second Einstein Telescope mock data and science challenge. Assuming that the loudest sources can be detected individually and removed from the data, we show that the residual background can be recovered with an accuracy of 11% with the standard cross-correlation statistic, after correction of a systematic bias due to the non-isotropy of the sources.Comment: 15 pages, 4 figures, accepted for publication in Physical Review

    Eclipsing binary and white dwarf features associated with K2 target EPIC251248385

    Full text link
    White dwarfs, remnants of Sun-like stars which have completed their evolution, are one of the most common types of stars in space. Despite this, very few white dwarfs have been observed in transiting or eclipsing systems, and only two planetary systems around white dwarfs are currently known, thus motivating a search for white dwarfs with transits or eclipses as seen by the Kepler telescope. A systematic search of K2 white dwarf targets revealed one candidate with regular eclipses, but additional research was necessary to confirm the transits and white dwarf signal were coming from the same astrophysical source. The software package PyKe was utilized to adjust the light curve aperture, and perform principal component analysis which revealed that the transits were originating from a single pixel. Generating a new lightcurve from this pixel revealed the absolute transit depth, which was unconstrained previously. Ten additional images taken with the 2m LCOGT telescope revealed that a potential target star in the single Kepler pixel was actually a cluster of three stars, but no clear transits were seen from any of the potential target stars in the followup images. Additionally, analysis of transit depths in the single pixel light curve and additional investigation of nearby bright sources supported the hypothesis that the transits were more likely to be coming from the white dwarf rather than the two other sources. However, the transit duration and shape appear atypical for white dwarf systems. Thus, despite determining the potential sources and relative sizes for the potential eclipsing white dwarf candidate, or whether the eclipses come from the white dwarf target cannot be confirmed without additional data.https://iopscience.iop.org/article/10.3847/2515-5172/ab5861Published versio

    A guidance and control assessment of three vertical landing options for RLV

    Get PDF
    The National Aeronautics and Space Administration is considering a vertical lander as a candidate concept for a single-stage-to-orbit reusable launch vehicle (RLV). Three strategies for guiding and controlling the inversion of a reentering RLV from a nose-first attitude to a vertical landing attitude are suggested. Each option is simulated from a common reentry state to touchdown, using a common guidance algorithm and different controllers. Results demonstrate the characteristics that typify and distinguish each concept and help to identify peculiar problems, level of guidance and control sophistication required, feasibility concerns, and areas in which stringent subsystem requirements will be imposed by guidance and control

    A Mock Data and Science Challenge for Detecting an Astrophysical Stochastic Gravitational-Wave Background with Advanced LIGO and Advanced Virgo

    Full text link
    The purpose of this mock data and science challenge is to prepare the data analysis and science interpretation for the second generation of gravitational-wave experiments Advanced LIGO-Virgo in the search for a stochastic gravitational-wave background signal of astrophysical origin. Here we present a series of signal and data challenges, with increasing complexity, whose aim is to test the ability of current data analysis pipelines at detecting an astrophysically produced gravitational-wave background, test parameter estimation methods and interpret the results. We introduce the production of these mock data sets that includes a realistic observing scenario data set where we account for different sensitivities of the advanced detectors as they are continuously upgraded toward their design sensitivity. After analysing these with the standard isotropic cross-correlation pipeline we find that we are able to recover the injected gravitational-wave background energy density to within 2σ2\sigma for all of the data sets and present the results from the parameter estimation. The results from this mock data and science challenge show that advanced LIGO and Virgo will be ready and able to make a detection of an astrophysical gravitational-wave background within a few years of operations of the advanced detectors, given a high enough rate of compact binary coalescing events

    Target of Opportunity Observations of Gravitational Wave Events with LSST

    Get PDF
    The discovery of the electromagnetic counterparts to the binary neutron star merger GW170817 has opened the era of GW+EM multi-messenger astronomy. Exploiting this breakthrough requires increasing samples to explore the diversity of kilonova behaviour and provide more stringent constraints on the Hubble constant, and tests of fundamental physics. LSST can play a key role in this field in the 2020s, when the gravitational wave detector network is expected to detect higher rates of merger events involving neutron stars (∼10s per year) out to distances of several hundred Mpc. Here we propose comprehensive target-of-opportunity (ToOs) strategies for follow-up of gravitational-wave sources that will make LSST the premiere machine for discovery and early characterization for neutron star mergers and other gravitational-wave sources

    Composite Reflective/Absorptive IR-Blocking Filters Embedded in Metamaterial Antireflection Coated Silicon

    Full text link
    Infrared (IR) blocking filters are crucial for controlling the radiative loading on cryogenic systems and for optimizing the sensitivity of bolometric detectors in the far-IR. We present a new IR filter approach based on a combination of patterned frequency selective structures on silicon and a thin (50 μm\mu \textrm{m} thick) absorptive composite based on powdered reststrahlen absorbing materials. For a 300 K blackbody, this combination reflects \sim50\% of the incoming light and blocks \textgreater 99.8\% of the total power with negligible thermal gradients and excellent low frequency transmission. This allows for a reduction in the IR thermal loading to negligible levels in a single cold filter. These composite filters are fabricated on silicon substrates which provide excellent thermal transport laterally through the filter and ensure that the entire area of the absorptive filter stays near the bath temperature. A metamaterial antireflection coating cut into these substrates reduces in-band reflections to below 1\%, and the in-band absorption of the powder mix is below 1\% for signal bands below 750 GHz. This type of filter can be directly incorporated into silicon refractive optical elements

    Instability of streamwise vortices in plane channel flows

    Get PDF
    We present analysis and numerical experiments on the instability of streamwise vortices in 'minimal channel' flows and argue that this instability is a key feature in the observed intermittent cycle of formation, break-up, and re-formation of these structures. The base flow is a three-component, two-dimensional pair of counter-rotating rolls with axes aligned along the direction of the mean shear. While it is not a steady solution to the Navier-Stokes equations, we show numerically that this flow is unstable on a fast time scale to a secondary, three-dimensional Floquet mode. The growth of the secondary instability does not saturate in a new equilibrium, but continues until highly unstable local shear layers form and the entire flow breaks down into turbulence. Our analysis is motivated in part by the strong similarities between the intermittent turbulent cycle in minimal channel flows and one studied, both experimentally and in computations, in Couette-Taylor flow
    corecore