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TECHNICAL MEMORANDUM

LUNAR MISSION AEROBRAKE PERFORMANCE STUDY

INTRODUCTION

This report describes the analyses and results of a general lunar transfer vehicle

aerobrake performance study. The study was conducted in anticipation of questions concerning
the potential performance benefits of aerobrake applications for lunar missions in the Space

Exploration Initiative (SEI). In addition, it was desired to obtain a general comparison of various

lunar mission scenarios. To accomplish this, nine mission scenarios were developed which
represent a broad range of vehicle and mission options. The mission scenarios were analyzed

using two combinations of vehicle design parameters which resulted in a minimum and maximum
value of initial mass in low-Earth orbit (IMLEO) for each scenario. The design parameters

included the engine specific impulse (Isp), lunar surface payload, crew module mass, and the
aerobrake mass fraction. The nine mission scenarios that were analyzed provided the largest

range of performance trades with a moderate number of computer simulation runs.

The nine mission scenarios are comprised of direct lunar transfer, low lunar orbit (LLO)
rendezvous, and L1 Lagrange point rendezvous mission profiles. Included among these scenarios

are the 90-Day Study steady-state piloted mission 1 and the Stafford Synthesis Group 2 ballistic
Earth return mission.

The Taguchi method was investigated in the early stages of this study as a means to
account for all possible lunar mission scenarios. This method, although valuable in other

applications, proved unsuccessful because of the interactions between the vehicle parameters
and their dependence on the mission scenario.

Variations of two vehicle concepts were investigated: the 90-Day Study lunar transfer
vehicle/lunar excursion vehicle (LTV/LEV) and the single propulsion/avionics (P/A) module
LTV.3 The single-P/A concept was developed in 1990 by the Preliminary Design Office at

Marshall Space Flight Center (MSFC) following the 90-Day Study. It is currently baselined as a
two-stage vehicle (core stage + drop tanks) in which the aerobrake is parked in LLO.

Two specific issues were addressed concerning the single-P/A module: (I) the per-
formance loss in taking the aerobrake to the lunar surface as opposed to parking it in LLO, and

(2) the performance benefits of adding another tank stage (dropped in LLO after propellant
transfer to the core stage prior to trans-Earth injection). The first issue is addressed in the lunar

transfer system analysis section of this report. The second issue is addressed in the parametric
analysis. This section shows parametric performance data for the two- and three-stage single-
P/A module LTV.

The sensitivity of vehicle mass to changes in the system parameters (Isp, crew module
mass, payload to the lunar surface, and aerobrake mass fraction) is presented for both for aero-
braked and all-propulsive Earth returns.



To provide a performance range for each mission scenario, the values of system parame-

ters used for the performance analysis were combined in such a way as to yield a low and high
IMLEO for both an aerobraked and an all-propulsive Earth return. This range from low to high

IMLEO displays the sensitivity of each mission scenario to changes in vehicle design parame-
ters.

All results are in metric units with the symbol (t) representing a metric tonne (1,000 kg).

STUDY DEFINITIONS

The following section provides brief definitions and examples of terms used in this report.

Mission Scenario

As stated in the introduction, the mission scenarios were designed to represent a large
number of possible lunar missions. There are many ways to go to the Moon when one considers
the number of vehicle options and the various orbital nodes through which that vehicle may

travel. In addition, the sequence in which the stages are used and the possible transfer of
propellant from one stage to another adds to the problem of defining a mission scenario.

Mission scenario is a combination of one mission profile, one vehicle concept, and one set
of operational assumptions (fig. 1).

MISSION PRORLE _.

VEHICLECONCEPT ---_._- MISSION SCENARIO
/

OPERA 
_tJMPIIONS

Figure 1. Mission scenario def'mition.

Mission Profile

Mission profile is the series of orbital nodes through which the iun_ transfer vehicle

travels. This study inciudedfour types of mission pr0f'fles- d_ect, LLO, LLO with a ballistic
reentry to the Earth's surface, and the LI mission profile. Figures 2 through 5 show the four

mission profiIes _d their corresponding delrta velocity (AV) budgets. The AV budgets shown in
these figures are for an aerobraked Earth return, however, each mission scenario was also
analyzed with an all-propulsive return so that the performance benefits of aerobraking could be

obtained. The appendix gives the definition of maneuver acronyms. The AV budgets were
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Figure 2. Delta-V budget: direct mission profile.
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Figure 3. Delta-V budget: LLO mission profile.
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Figure 4. Delta-V budget: LLO/ballistic reentry mission profile.
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Figure 5. Delta-V budget: L1 mission profile.
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obtained from the Lunar/Mars Exploration Program Office at Johnson Space Center (JSC) except
for the direct mission which is from reference 1.

Direct mission profile: The vehicle departs LEO and descends to the lunar surface

without inserting into a lunar parking orbit. The vehicle then ascends into the return trajectory
and enters an Earth parking orbit using aerobraking or an all-propulsive maneuver as shown in

figure 2.

LLO mission profile: The vehicle inserts into a lunar parking orbit prior to descent and

after ascent (fig. 3). The LLO profile provides the opportunity to park components in lunar orbit
which are not needed on the surface, such as the aerobrake, radiation shield, and the Earth return

stage or propellant.

LLO/ballistic reentry, mission profile: Similar to the LLO profile except the Earth return

method is a ballistic reentry to the Earth's surface (fig. 4). This profile is the same as the Apollo
mission profile and was included in this study in response to the recommendation for a ballistic

return in the 1991 Synthesis Group Report. 2

L1 mission profile: The vehicle leaves Earth orbit and brakes at the L1 Lagrange point.

Vehicle components which are not needed on the Moon may be parked at the Lagrange point.
After the vehicle leaves L1, it is inserted into a lunar orbit. The descent and ascent maneuvers

are performed between the lunar parking orbit and the surface. The vehicle returns to Earth

through the same nodes. This prof'tle, shown in figure 5, was included in response to the recent
interest in using the Lagrange points as staging nodes.

Vehicle Concept

Figure 6 shows the two vehicle concepts that were investigated in this study.

The single-P/A module: A lunar transfer vehicle designed by the Preliminary Design
Office at MSFC in 1990 following the 90-Day Study. As the name implies, it has one propulsion

system that performs all mission maneuvers and only one crew module.

Dual vehicle: Based on the 90-Day Study LTV/LEV. The LTV is used for transfers
between LEO and either LLO or L1, depending on the mission profile. The LEV is based at

either LLO or L1 and is used for transfers between its base and the lunar surface. Propellant and
cargo are transferred from the LTV to the LEV at the LEV orbital base.

Vehicle variations included two- and three-stage configurations, with and without an
aerobrake (aerobrake or all-propulsive Earth return).

Operational Assumptions

Various operational assumptions were required to fully define the lunar mission sce-

narios. These assumptions included the following information for each mission scenario:

Number of stages

Staging sequence
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Tank stage sizing

Propellant transfers

Components (aerobrake, return prop., etc.) parked in LLO or L1

Rendezvous in LLO or L1.

These assumptions varied for each scenario, however in most, the trans-lunar injection
(TLI) tanks were sized to hold all the propellant needed for the mission. Because the vehicles in

this study were assumed to be based in LEO and the TLI tanks were ejected in all scenarios,
replacement TLI tanks would be required for the next mission. All the mission propellant could be

delivered in the replacement TLI tanks, then transferred to other tanks and the core stage prior to
LEO departure.

Stage

Propulsive stage: A stage which includes a propulsion system and propellant tanks; may
be referred to as the core stage.

_: A stage consisting of a pair of propellant tank sets that are dropped at some

point in the mission. Each tank set has one liquid hydrogen tank and one liquid oxygen tank.

Aerobrake

Integral aerobrake: This type of aerobrake is taken to the lunar surface. It is a permanent
component of the transfer vehicle. It has no subsystems (reaction control system (RCS), power,
communications, etc.) and its mass includes only the structure and the thermal protection system

(TPS).

Freeflying aerobrake: This aerobrake is a separate component of the transfer vehicle. It
can remain in orbit as an autonomous spacecraft, and then upon rendezvous, be reattached to the
transfer vehicle. In addition to the structure and the TPS, the aerobrake mass includes sub-

systems such as attitude control, power, and communications.

Aer0brake efficiency factor: (r/) is a measure of the percent savings in IMLEO for a

transfer vehicle employing an aerobrake upon Earth (or other) return, as opposed to an all-
propulsive return.

IMLEOArP - IMLEOAm
r/=

IMLEOA/p

Aerobrake mass fraction: A system parameter for this study. It represents the ratio of
aerobrake mass to the total vehicle mass at atmospheric reentry.

SELECTED MISSION SCENARIOS

Table 1 lists and describes the nine mission scenarios as defined by one mission profile,

one vehicle concept, and a set of operational assumptions. Note that scenario No. 6 is the
mission scenario recommended by the Stafford Synthesis Group, 2 and scenario No. 7 is the

profile used for the 90-Day Study steady-state piloted mission. I



Table 1. Selection mission scenarios.

Mission Profde Vehicle Concept Operational Assumptions

1. Direct

2. Direct

Single P/A, 2-stage

Single P/A, 3-stage

Tank set 1 (TS1) sized for all propellant

Transfer propellant to core stage before TLI

TS 1 performs TLI

Drop TS1 after TLI

TS 1 sized for TLI, TEI, and EOI propellant

Transfer TEI, EOI propellant to core stage
before TLI

TS2 performs LOI, descent

Drop TS2 on lunar surface

3. LLO Single P/A, 2-Stage TS 1 sized for all propellant

Transfer propellant to core stage before TLI

TS 1 performs TLI

Drop TS1 after TLI

Aerobrake, rad. shield, return prop. parked in LLO

(in storage tanks)
Core stage performs LOI, descent, ascent; Return

propellant transferred to core before TEl

4. LLO Single P/A, 3-Stage TS1 sized for TLI descent, ascent propellant

Transfer des., asc. propellant to core stage before
TLI

Drop TS 1 after TLI

TS2 sized for LOI, TEl, EOI; performs LOI

Aerobrake, rad. shield, TS 1 parked in LLO

Core stage performs descent, ascent; rendezvous in

LLO, TS 1 transfers propellant for TEI, EOI

Drop TS2 in LLO

5. LLO; All to surface

.

8

LLO; Ballistic

Reentry (Stafford

Synthesis
Recommendation)

Single P/A, 3-Stage

Single P/A, 3-Stage

TS 1 sized for TLI, ascent, TEI, EOI propellant
Transfer asc., TEI, EOI prop. to core stage before

TLI

Drop TS 1 after TLI

TS2 performs LOI, descent
Aerobrake, rad. shield taken to lunar surface

Drop TS2 on lunar surface

TS 1 sized for TLI descent, ascent propellant

Transfer des., asc. propellant to core stage before
TLI

Drop TS1 after TLI

TS2 sized for LOI, TEI, EOI; performs LOI

Rad. shielf, TS2 parked in LLO

Core stage performs descent, ascent; rendezvous in
LLO

TS2 transfers propellant for TEI, EOI

Drop TS2 in LLO

Ballistic Reentry



Mission Profile

Table 1. Selectionmissionscenarios(continued)

VehicleConcept OperationalAssumptions

7. LLO

8. L1

9. L1

Dual Vehicle
(90-Day Study)

SingleP/A, 3-Stage

Dual Vehicle

Steady-statepiloted mission
TS1sizedfor TLI, TEl, EOI propellant
Transferspropellant to corestagebeforeTLI
TS1performsTLI; Drop TS1afterTLI
TS2 sizedfor LOI, desc.,asc.;performsLOI
TS2 transfersdesc.,asc.prop. to LEV aster

rendezvousin LLO
LTV dropsTS2 in LLO; LEV descends
LEV crewmodule= 3,769kg
LTV coreperformsTEl, EOI
TS1 sizedfor desc.,asc.,TEl, EOI

TS2 sizedfor LIlE, TLI, LOI, TLIM, LIlM
Des.,asc.prop. transferredto coreandTEl, EOI

prop. transferredto storagetank beforeTLIE
TS1 droppedafterTL1E; A/B parkedat L1
TEl, EOI prop.parkedat L1 in storatetanks
TS2performsLIlE, TLI, LOI
TS2 parkedin LLO
Core sizedfor des.,asc.
TL1M, LIlM prop.transferredto core;TS2dropped

in LLO
TEl, EOI, prop. tranfserredto coreat L1

TS1 sizedfo TL1E, TEl, EOI propellant
TEl, EOI propellant transferredto corestagebefore

TL1
TS1performsTLI; DropsTS1 afterTL1E
TS2sizedfor LIlE, TLI, LOI, desc.,asc.,TL1M,

LIlM, performsLIlE
LEV basedat L1
TS2 transfersTLI, LOI, desc.,asc.,TL1M, LIlM

prop. to LEV after
rendezvousat L1

LTV dropsTS2 at L1; LEV descends
LEV crewmodule= 3,769kg
LTV coreperformsTEl, EOI

9



SCALING EQUATIONS

The software used for the mission scenario simulations required scaling equations for the

tank and core stages. Scaling equations, shown below for both vehicle concepts, define the bum-

out mass of the stage as a function of its propellant capacity. Note that the tank stage scaling

equation was used for both vehicle concepts.

Single P/A Core Stage

0 < Mp < 40,000 kg Mbo = 5,038 + 5.78959E-02*Mp (kg)
Mp > 40,000 kg Mbo = 0.1628"Mp (kg) (mass fraction = 0.86)

Dual Vehicle LTV Core Stage

0 < Mp < 40,000 kg Mbo = 4,397 + 5.78959E-02*Mp (kg)
Mp > 40,000 kg Mbo = 0.1494"Mp (kg) (mass fraction = 0.87)

Drop Tank Stage (both vehicles)

11,000 < Mp < 160,000 kg Mbo = 469 + 0.041461"Mp - 4.9689E-08*Mp^2 (kg)

Mp > 160,000 kg Mbo = 0.0363"Mp (kg) (mass fraction = 0.965)

For each stage there were two scaling equations used, each valid for a given propellant loading.
The equations for the lower range were developed in previous lunar vehicle studies at MSFC. 4 5

They follow the form:

Mbo = A + BMp + CMp 2

The coefficients were determined using a second or third order curve fit of data which defined the

stage burnout mass over a range of propellant loadings. These scaling equations were extrapo-
lated beyond the given range of propellant loading by assuming a constant stage mass fraction
(X) for large propellant loadings. This is a valid assumption since the value of X tends to reach a

limiting value as the propellant loading increases. The value of the constant mass fraction was
determined by substituting the scaling equation _into the formula which defines the stage mass
fraction and calculating _, at a propellant loading slightly higher than the maximum propellant

loading of the original scaling equation. This substitution is shown below.

_. = Mp/(Mp + mbo) = Mp/(A+(B+I)Mp+CMp 2)

The calculated value of _. was then used to define the scaling equations used for the higher pro-

pellant loadings using the following transformation.

Mbo = [(1-_)/_]Mp (i.e. B = (1-_)/_)

10



SYSTEM PARAMETERS

Four system parameters were used to define the transfer vehicle performance as indi-

cated by the IMLEO:

Payload to the lunar surface

Vehicle Isp

Aerobrake mass fraction

Crew module mass.

To obtain an understanding of the range of potential performance levels for the nine mis-

sion scenarios, these input system parameters were given values such that they would yield a
low-transfer vehicle IMLEO (low IMLEO inputs) and a high-transfer vehicle IMLEO (high
IMLEO inputs). In this manner, the initial mass of the transfer vehicle is bounded and one has a

range of performance levels for that scenario. The low and high IMLEO inputs (table 2) were
selected based on results of current SEI studies and projected technological advances.

Table 2. System parameter IMLEO inputs.

PAYLOAD TO SURFACE (kg)

VEHICLE Isp (s)

AEROBRAKE MASS FRACTION
(Free-Flying/Integral)

CREW MODULE MASS (kg)
(LEO/Ballistic Return)

High Low
IMLEO IMLEO

Inutp_uis_
15000 5000

450 481/465 *

* Low value of Isp used for lunar ascent and descent

In addition to the low and high IMLEO inputs, each mission scenario was simulated using

an aerobraked return and an all-propulsive return (except mission scenario No. 6, which used a
ballistic Earth return). In this manner, the performance benefits of aerobraking could be
assessed.

RUN MATRIX

There were four runs for each mission scenario: high and low IMLEO inputs for both

aerobraked and all-propulsive Earth return as described above. Table 3 shows the study run
matrix. Listed in the matrix are the input values: Isp, crew module mass, A/B mass fraction,
payload to lunar surface, and Earth return method. For reference, the number of stages, mission

profile, vehicle concept and the mission scenario number are listed as well.

11
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RESULTS

Lunar Transfer System Performance

Table 4 lists the results for the first portion of the study. Included in this table are the run

number, Earth return method, and the IMLEO input level; (H)igh or (L)ow. The forth column lists

the IMLEO, which was the measure of performance for this study. The next two columns give the
vehicle atmospheric entry mass (Mentry) and the aerobrake mass (MAre, aerobrake cases only).

The remaining columns list the propellant capacity and mass fraction for each stage. The propel-
lant capacities shown include the propellant that is used for propulsive maneuvers by the stage

and any propellant that may be transferred to other stages. Figure 6 is a graphical representation
of the performance which show the IMLEO values for each mission scenario. The Y-axis shows

the transfer vehicle IMLEO value in metric tonnes and the X-axis lists the nine mission scenar-

ios investigated. There are two bars for each mission scenario: the left bar represents the aero-

braked return while the right bar represents the all-propulsive return. The shaded region for each
bar displays the range of IMLEO values obtained from the low and high IMLEO input values

described earlier. For example, mission scenario No. 4 (three-stage single P/A performing a LLO
mission profile) will have a mass of approximately 125 to 215 tonnes in LEO when aerobraking is
employed as the Earth return method and will have a mass of approximately 150 to 235 tonnes
when an all-propulsive Earth return is used.

The following observations can be made about the selected mission scenario performance
levels:

For the direct mission profile, the two-stage, single-P/A Module LTV is 31.7 to 217.0 t

(21.8 to 86.8 percent) greater in IMLEO than the three-stage single P/A for an aerobraked
(A/B) return and 110.4 to 424.5 t (48.8 to 123.0 percent) greater for an A/P return.

For the LLO mission profile, the two-stage single PIA is 8.5 to 26.8 t (6.9 to 12.4 percent)
greater in IMLEO than the three-stage single P/A for A/B return and 22.7 to 53.7 t (15.2 to
22.0 percent) greater for A/P return.

A two-stage single P/A performing a direct-mission profile is 45.5 to 223.9 t (34.6 to 92.2

percent) greater in IMLEO than the two-stage single P/A performing an LLO mission
profile for A/B return and 165.0 to 472.5 t (96.2 to 159.0 percent) greater for A/P return.

A three'stage single P/A performing a direct-mission profile is 22.3 to "33.7 t (15.5 to 18.1
percent) greater in IMLEO than the three-stage single P/A performing an LLO mission

profile for A/B return and 77.3 to 101.8 t (41.7 to 51.9 percent) greater for A/P return.

A three-stage single PIA tlaat C_es all the components to the lun_surface is 33.5 to 57.3

t (26.5 to 27_2 percent) greater in IMLEO than the three-stage single PIA which parks the
Earth return components in lunar orbit for A/B return and 95.3 to 147.7 t (60.6 to 64.0 per-
cent) greater for A/P return.

A three-stage single P/A performing the ballistic-reentry mission profile is 0.86 t (0.4

percent) less to 12.9 t (10.5 percent) greater in IMLEO than the three-stage single
P/A-LLO for A/B return. The crew module for the ballistic reentry mission scenario was
assumed to be greater due to the ablative heat shielding. This shield is taken to the

!
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lunar surface which causes lower performance compared to the LLO mission scenario in

which the aerobrake is left in low Iunar orbit. However, the ballistic reentry mission
scenario was found to be 12.9 to 28.5 t (8.7 to 11.7 percent) less in IMLEO than the three-
stage single P/A performing the LLO mission prof'de with A/P return.

A three-stage single P/A performing an LLO mission profile is 10 to 25.5 t (8.8 to 13.4

percent) greater in IMLEO than the three-stage dual vehicle (90-Day Study steady-state
piloted mission scenario) for A/B return and 5.7 to 17.4 t (3.9 to 7.7 percent) greater for A/P
return.

A three-stage single P/A and the three-stage dual vehicle, both performing an L1 mission
profile, display almost identical performance, However, the chart shows that as the input

performance parameters (Isp, payload to surface, crew module mass, and A/B mass frac-
tion) are changed to cause a higher IMLEO, the dual vehicle concept performs increasingly
better.

A three-stage single P/A performing a L1 mission profile is 21.2 to 34.8 t (16.1 to 17.2
percent) greater in IMLEO than the three-stage single P/A performing an LLO mission
profile for A/B return and 23.0 to 38.3 t (9.4 to 15.7 percent) greater for A/P return.

A three-stage dual vehicle performing a L1 mission profile is 31.4 to 41.6 t (21.8 to 27.8

percent) greater in IMLEO than the three-stage dual vehicle performing an LLO mission
profile for A/B return and 30.7 to 41.4 t (18.3 to 21.5 percent) greater for A/P return.

Aerobrake Performance

Table 5 lists the aerobrake efficiency factors for each of the mission scenarios. The aero-
brake efficiency factor was defined earlier in the study as the percent savings in IMLEO for a

transfer vehicle that uses an aerobrake maneuver as opposed to an all-propulsive maneuver.
The chart can be read as follows: A two-stage single-P/A vehicle performing a direct mission
profile (mission scenario No. 1), using the high IMLEO inputs will be 39.0 percent less in

IMLEO when using an aerobrake maneuver as opposed to an all-propulsive maneuver upon
Earth return.

FigUre 7 graphically illustrates the aerobrake efficiency data. The bottom of the shaded

region of each mission scenario is the aerobrake efficiency for the high IMLEO inputs while the
top Of each=shaded region displays the aerobrake efficiency for the low IMLEO inputs. Using this

format, one can determine the range of IMLEO savings for each mission scenario when aero-
braking is employed as opposed to an all propulsive Earth return. The following observations are

made concerning the aerobrake performance:

The selected mission scenarios show that for the highest iMLEO input cases (upper limit

for that scenario), the transfer vehicle is 11.0 to 39.0 percent less in IMLEO when using an
aerobraked Earth return as opposed to an all-propulsive return, and the lowest IMLEO

input cases yields a transfer vehicle with 16.1 to 47.4 percent less mass.
2 : ...... : : := .

The two-stage single P/A performing a direct mission profile (mission scenario No. 1)

shows greatest savings (39.0 to 47.4 percent) in IMLEO while the three-stage, single P/A
performing an L1 mission profile (mission scenario No. 7) shows the least savings (11.0 to
16.1 percent).
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Table 5. Aerobrake performance results.

Aerobrake Efficiency FactQr

Mission Scenario _ 1"1 l'l
HIghlMLEO Inputs Low IMLEO Inputs

A

I .390 .474 .084

2 .277 .357 .080

3 .184 233 .049

4 114 .173 .059

5 ,302 .358 .056

6 --

7 .168 ,210 .042

8 ,II0 .161 .051

9 .133 .170 .037

In most cases, a mission scenario with a higher IMLEO displayed a higher aerobrake effi-

ciency factor. Also, the aerobrake becomes more efficient with decreasing Isp or increasing
crew module mass or surface payload mass. The reason for an increase in aerobraking effi-
ciency is that aerobraking in effect, saves more propellant at the lower vehicle performance

levels than at the high performance levels.

Normally, the aerobrake is more efficient (saves more percentage of IMLEO) for low Isp
and high crew module mass as is the case for the high IMLEO inputs. However, in this
study, to achieve the highest IMLEO for a mission scenario, the payload to the lunar sur-
face was also increased. As a result, some of the trends normally displayed by the aero-

brake efficiency factor are not visible.

Sensitivity Analysis

Figure 8 shows the magnitude of the range of IMLEO for each mission scenario and Earth
return method. The range of IMLEO's gives an indication of the sensitivity of each mission

scenario to the vehicle parameters that were varied. The mission scenarios with smaller ranges

are less sensitive to variations in the vehicle design parameters. This characteristic is often
referred to as robustness. It is interesting to note that the mission scenarios with the lowest

IMLEO, as shown previously, also have the smallest range of variation. This indicates that the
mission scenarios which yield the lowest IMLEO's are also the most robust. The data also

shows that aerobraking decreases the range of IMLEO variation by 2 to 33 percent over all-
propulsive Earth returns. Therefore, it could be concluded that aerobraking may improve the

robustness of a lunar transportation system. The benefits of aerobraking in reducing the sensi-
tivity of IMLEO to each vehicle design parameter will be shown in the next section.
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Parametric Analysis

TWO mission: scenarios were ch0senfo_ap_ametric study; the two- and three-stage

single-P/A moduIe performing an LLO fiiission profile (mission scenarios 3 and 4). As stated in

the introduction, the current single-P/A baseline is a two-stage (core stage + TLI drop tank set)

vehicle in which the aerobrake is parked in LLO. Parametric analysis will show the performance
benefits of an additional drop tank set.

The parametric study was modeled as follows: baseline values and ranges for the four

system parameters were chosen for both mission scenarios. Three system parameters were kept
constant at the baseline values while the fourth parameter was varied for both the aerobrake and

all-propulsive return. This was repeated for each parameter. The parameter values are listed
below in table 6. The baseline values are listed in the middle column.

Table. 6. Parametric analysis parameters.

Payload to Surface (kg)

Isp (s)

A/B Mass Fraction (%)

Crew Module Mass (kg)

5,000 10,000

450 465

10 15

3,000 4,000

Baseline

15,000

481/465"

22

5,000

20,000 25,000

25 30

6,000 7,000

* Low value of Isp used for ascent and descent

Figures 9 and 10 are the graphical results of the parametric study for the two and three-
stage, single-P/A vehicles, respectively. Tables 7 and 8 are results extracted from the parametric

graphs. The baseline mission inputs are listed again for reference. The partial derivatives are
based on a linear approximation of the data. In this manner, one can predict the impact on IMLEO
to changes in desigh parameters. For example, the two-stage single PIA performing an LLO

mission profile has a baseline IMLEO of 186 t when employing an aerobraked Earth return (table

7). If the payload requirement increases from 5,000 kgto6,200 kg (an increase of 1,200 kg); the
resulting IMLEO would increase by approximately

(1,200 kg) x (5.30 kg/kg) = 6,300 kg.

Therefore, the adjusted IMLEO is 186 t + 6.3 t = 192.3 t.

T

The following are observations concerning the two- and three-stage single-P/A
parametric study:

The baseline three-stage single P/A in an LLO mission profile is approximately 8 t less in

IMLEO than the two-stage single PIA for an aerobraked (A/B) return and approximately
26 t less for an A/P return.

The IMLEO f0r the two-stage single P/A performing an LLO mission profile is 19.1 percent

more sensitive to changes in payload to the lunar surface compared to the three-stage
single PIA for A/B return and 36.0 percent more sensitive for A/P return.
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Table 7. Parametric results: two-stage single P/A.

Basellne Mission:

2 stage, Single P/A, LL0 Misslon Profile (2 stg. 5. P/A;LL0)

lsp - 481 s(465sforascent/descent)
Payload to Surface ® 15000kg.
Crew Module = 5000 kg.
AIB Ma-_sFraction - 22%

3O

Results*: IMLE0 = 186t IMLE0 =231t
A/Breturn AlP return

A/B Return: A/P R_tvrn;

6M_ r_ aM= -870.0 s -1460.0
Isp (_ Isp

_ Mn = 5.30 5 Mn = 6.13
Payload (_ Payload

(_Crew Module (_Crew Module

8 AIB Mass
Fraction

Crew Module _ Crew Module

823.05 KG a M_

A/B Mass
Fraction

. Ratios based on linear approximation of data over given parameter ranges
I=

F

_M
" "n = I126.85 KG " ''n = -

A/B Mass _ _ A/B Mass
Fraction Fraction

parameterw Ratios based on linear approximation of data over given ranges

Table 8. Parametric results: three-stage single P/A.

Baseline Mission:
3 stage, Single P/A, LL0 Mission Profile (3 stg. 5. PlA;LL0)

isp = 481 s(465sforascent/descent)
Payload to Surface = 15000kg.
Crew Module = 5000 kg.
AIB Mass Fraction - 22 %

Results*: IMLEO = 178t IMLEO = 2o5t
AIB return AI P return

A/B Return: A/P Return:

5__ M -598.7 EY- --M= -844,7
(_ Isp (_ Isp

= 4 .45 _I = 4 , 51 i

Payload _ Payload
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The IMLEO for the two-stage single P/A is 43.8 percent more sensitive to changes in crew
module mass compared to the three-stage single P/A for A/B return and 59.8 percent more
sensitive for A/P return.

The IMLEO for the two-stage single P/A is 36.9 percent more sensitive to changes in
aerobrake mass fraction compared to the three-stage single P/A for A/B return.

The IMLEO for the two-stage single P/A is 45.3 percent more sensitive to changes in Isp
compared to the three-stage single P/A for A/B return and 72.8 percent more sensitive for
A/P return.

Mission Scenario Rankings

Table 9 is a listing of the best mission scenarios based on IMLEO for three criteria. As
the chart indicates, the top two mission scenarios use aerobraking for return to Earth orbit. The
third uses aerobraking (ballistic reentry) for return to Earth's surface. This demonstrates the
obvious benefits of aerobraking for lunar missions. These rankings are based solely on the values

of IMLEO. Cost and operational considerations could alter these rankings. It should be noted

that the mission sequences used in this study were not optimized. If the staging sequences were
optimized, IMLEO would be reduced further. It should also be noted that the scenarios listed on

this chart are among the most robust mission scenarios as shown in the parametric analysis.
Based on the relatively narrow perspective of this study it is not possible to select the optimum

mission scenario, however, the scenarios listed on this chart appear to be the most promising for
further investigation.

Table 9. Mission scenario rankings.

BEST
AEROBRAKED

SCENARIOS

#4

#3

BEST
ALL PROPULSIVE

SCENARIOS

#6

#7

#4

BEST
OVERALL

SCENARIOS

#7, A/B RETURN

#4, A/B RETURN

#6

THESE RANKINGS ARE BASED ON VEHICLE PERFORMANCE ONLY

_"y: #3 : LLO; 2 STAGE SINGLE WA, RETURN TO LEO
#4 : LLO; 3 STAGE SINGLE P/A, RETURN TO LEO

#6 : LLO; 3 STAGE SINGLR PIA, BALUSTIC RETURN TO E_RTH (STAFFORD)

#7 : LLO; 3 STAGE DUAL VEHICLE, RETURN TO LEO (90 DAY STUDY)
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STUDY CONCLUSIONS

The selected mission scenarios show an 11- to 49-percent decrease in IMLEO when

aerobraking is employed as an Earth return method as opposed to an all-propulsive maneuver.

A three-stage, single-P/A for which the aerobrake and return propellant is parked in LLO,
is 33.5 to 57.3 t less in IMLEO compared to the same vehicle if all components are taken to the
lunar surface.

The 90-Day Study steady-state piloted LTV is 10 to 25.5 t less in IMLEO than the

three-stage single P/A for the same mission profile.

Both the three-stage single PIA and the dual vehicle LTV are significantly greater in IM

LEO when performing an L1 mission profile compared to an LLO mission prof'de.

The two-stage single P/A is 8.5 to 26.8 t greater in IMLEO than the three-stage single
P/A, if an aerobr_ed E_ _returnkis assumedl _ _..... _ :_

The parametric study shows the IMLEO for the two-stage single P/A performing an LLO

mission prof'de is more sensitive to changes in all system parameters (Isp, crew module mass,

payload to lunar surface, and aerobrake mass fraction) than the three-stage single P/A.

The sensitivity analysis indicates aerobraking may improve the robustness of every
mission scenario, i.e., aerobraking not only reduces IMLEO (compared to all-propulsive) but

also may decrease IMLEO's sensitivity to changes in system parameters.

STUDY RECOMMENDATIONS

The results and conclusions of this study were based entirely on the vehicle performance
as indicated by IMLEO. Further analysis should include Earth-to-orbit transportation, mission

operations, and program cost analyses.
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APPENDIX

SYMBOLS AND ACRONYMS

A/B

A/P

ASC

BR

DES

EOI

IMLEO

JSC

kg

LEO

LEV

LLO

LOI

LTV

LIlE

LIIM

Mbo

Mp

MSFC

P/A

PD

RCS

SEI

aerobrake

all-propulsive

ascent (from lunar surface)

ballistic return

descent (to lunar surface)

Earth orbit insertion

initial mass in low-Earth orbit

Johnson Space Center

kilogram

low-Earth orbit

lunar excursion vehicle

low lunar orbit

lunar orbit insertion

lunar transfer vehicle

L1 insertion from Earth

L1 insertion from Moon

burnout mass

mass of propellant

Marshall Space Flight Center

propulsion/avionics

Program Development Office/Preliminary Design Branch

reaction control system

Space Exploration Initiative
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t

TEI

TLI

TL1E

TLIM

TPS

TS

77

AV

metric tonne (1,000 kg)

trans-Earth injection

trans-lunar injection

trans-L1 from Earth

trans-L1 from Moon

thermal protection system

tank stage

aerobrake efficiency factor

vehicle velocity increment for mission maneuver

stage mass fraction
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