145 research outputs found

    Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats

    Get PDF
    The aim of this work was to study in rats the nasal route for the brain delivery of the vasoactive intestinal peptide (VIP) neuropeptide. After evaluating VIP stability in solutions obtained from nasal washes, the effect of formulation parameters (pH 4-9, 0-1% (w/v) lauroylcarnitine (LC), hypo- or isoosmolality) on the brain uptake of intranasally administered VIP (10(-8)M)/125I-VIP (300,000 cpm/ml) was studied, using an in situ perfusion technique. Brain radioactivity distribution was assessed by quantitative autoradiographic analysis. Results were compared to intravenously administered VIP. With a hypotonic formulation at pH 4 containing 0.1% LC and 1% bovine serum albumin, VIP stability was satisfactory and loss by adsorption was minimal. Using this formulation, around 0.11% of initial radioactivity was found in the brain after 30 min perfusion and was located in the olfactory bulbs, the midbrain and the cerebellum. HPLC analysis of brain and blood extracts demonstrated the presence of intact VIP in brain and its complete degradation in the blood compartment. By intravenous administration, no intact VIP was found either in brain or in blood. In conclusion, intact VIP could be delivered successfully to the brain using the intranasal route for administration

    Anticancer drug delivery with transferrin targeted polymeric chitosan vesicles

    Get PDF
    The study reports the initial biological evaluation of targeted polymeric glycol chitosan vesicles as carrier systems for doxorubicin (Dox). Transferrin (Tf) was covalently bound to the Dox-loaded palmitoylated glycol chitosan (GCP) vesicles using dimethylsuberimidate (DMSI). For comparison, glucose targeted niosomes were prepared using N-palmitoyl glucosamine. Biological properties were studied using confocal microscopy, flow cytometry, and cytotoxicity assays as well as a mouse xenograft model. Tf vesicles were taken up rapidly with a plateau after 1-2 h and Dox reached the nucleus after 60-90 min. Uptake was not increased with the use of glucose ligands, but higher uptake and increased cytotoxicity were observed for Tf targeted as compared to GCP Dox alone. In the drug-resistant A2780AD cells and in A431 cells, the relative increase in activity was significantly higher for the Tf-GCP vesicles than would have been expected from the uptake studies. All vesicle formulations had a superior in vivo safety profile compared to the free drug. The in vitro advantage of targeted Tf vesicles did not translate into a therapeutic advantage in vivo. All vesicles reduced tumor size on day 2 but were overall less active than the free drug

    Subcutaneously delivered antimicrobials: real life, facts and myths

    No full text
    International audienc

    Modélisation pharmacocinétique-pharmacodynamique des antifongiques

    No full text
    POITIERS-BU Médecine pharmacie (861942103) / SudocSudocFranceF

    Étude pharmacocinétique du MPB 07 chez le rat

    No full text
    POITIERS-BU Médecine pharmacie (861942103) / SudocSudocFranceF

    La colistine : phénix de l'antibiothérapie ?

    No full text
    RENNES1-BU Santé (352382103) / SudocSudocFranceF

    Etude de la pharmacocinétique d'onercept chez le sujet sain

    No full text
    POITIERS-BU Médecine pharmacie (861942103) / SudocSudocFranceF
    corecore