248 research outputs found
SOT-MRAM 300mm integration for low power and ultrafast embedded memories
We demonstrate for the first time full-scale integration of top-pinned
perpendicular MTJ on 300 mm wafer using CMOS-compatible processes for
spin-orbit torque (SOT)-MRAM architectures. We show that 62 nm devices with a
W-based SOT underlayer have very large endurance (> 5x10^10), sub-ns switching
time of 210 ps, and operate with power as low as 300 pJ.Comment: presented at VLSI2018 session C8-
Perpendicular magnetic anisotropy of CoFeB\Ta bilayers on ALD HfO2
Perpendicular magnetic anisotropy (PMA) is an essential condition for CoFe thin films used in magnetic random access memories. Until recently, interfacial PMA was mainly known to occur in materials stacks with MgO\CoFe(B) interfaces or using an adjacent crystalline heavy metal film. Here, PMA is reported in a CoFeB\Ta bilayer deposited on amorphous high-kappa dielectric (relative permittivity kappa=20) HfO2, grown by atomic layer deposition (ALD). PMA with interfacial anisotropy energy K-i up to 0.49 mJ/m(2) appears after annealing the stacks between 200 degrees C and 350 degrees C, as shown with vibrating sample magnetometry. Transmission electron microscopy shows that the decrease of PMA starting from 350 degrees C coincides with the onset of interdiffusion in the materials. High-kappa dielectrics are potential enablers for giant voltage control of magnetic anisotropy (VCMA). The absence of VCMA in these experiments is ascribed to a 0.6 nm thick magnetic dead layer between HfO2 and CoFeB. The results show PMA can be easily obtained on ALD high-kappa dielectrics
Steady-state modulation of voltage-gated K+ channels in rat arterial smooth muscle by cyclic AMP-dependent protein kinase and protein phosphatase 2B
Voltage-gated potassium channels (Kv) are important regulators of membrane potential in vascular smooth muscle cells, which is integral to controlling intracellular Ca2+ concentration and regulating vascular tone. Previous work indicates that Kv channels can be modulated by receptor-driven alterations of cyclic AMP-dependent protein kinase (PKA) activity. Here, we demonstrate that Kv channel activity is maintained by tonic activity of PKA. Whole-cell recording was used to assess the effect of manipulating PKA signalling on Kv and ATP-dependent K+ channels of rat mesenteric artery smooth muscle cells. Application of PKA inhibitors, KT5720 or H89, caused a significant inhibition of Kv currents. Tonic PKA-mediated activation of Kv appears maximal as application of isoprenaline (a β-adrenoceptor agonist) or dibutyryl-cAMP failed to enhance Kv currents. We also show that this modulation of Kv by PKA can be reversed by protein phosphatase 2B/calcineurin (PP2B). PKA-dependent inhibition of Kv by KT5720 can be abrogated by pre-treatment with the PP2B inhibitor cyclosporin A, or inclusion of a PP2B auto-inhibitory peptide in the pipette solution. Finally, we demonstrate that tonic PKA-mediated modulation of Kv requires intact caveolae. Pre-treatment of the cells with methyl-β-cyclodextrin to deplete cellular cholesterol, or adding caveolin-scaffolding domain peptide to the pipette solution to disrupt caveolae-dependent signalling each attenuated PKA-mediated modulation of the Kv current. These findings highlight a novel, caveolae-dependent, tonic modulatory role of PKA on Kv channels providing new insight into mechanisms and the potential for pharmacological manipulation of vascular tone
Modulation of cancer cell growth and progression by Caveolin-1 in the tumor microenvironment
Caveolin-1 (Cav-1), a major structural component of cell membrane caveolae, is involved in a variety of intracellular signaling pathways as well as transmembrane transport. Cav-1, as a scaffolding protein, modulates signal transduction associated with cell cycle progression, cellular senescence, cell proliferation and death, lipid homeostasis, etc. Cav-1 is also thought to regulate the expression or activity of oncoproteins, such as Src family kinases, H-Ras, protein kinase C, epidermal growth factor, extracellular signal-regulated kinase, and endothelial nitric oxide synthase. Because of its frequent overexpression or mutation in various tumor tissues and cancer cell lines, Cav-1 has been speculated to play a role as an oncoprotein in cancer development and progression. In contrast, Cav-1 may also function as a tumor suppressor, depending on the type of cancer cells and/or surrounding -stromal cells in the tumor microenvironment as well as the stage of tumors.
The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of alpha5-integrin and the activation of Src, Ras and Erk
Proteins containing a caveolin-binding domain (CBD), such as the Rho-GTPases, can interact with caveolin-1 (Cav1) through its caveolin scaffold domain. Rho-GTPases are important regulators of p130Cas, which is crucial for both normal cell migration and Src kinase-mediated metastasis of cancer cells. However, although Rho-GTPases (particularly RhoC) and Cav1 have been linked to cancer progression and metastasis, the underlying molecular mechanisms are largely unknown. To investigate the function of Cav1–Rho-GTPase interaction in metastasis, we disrupted Cav1–Rho-GTPase binding in melanoma and mammary epithelial tumor cells by overexpressing CBD, and examined the loss-of-function of RhoC in metastatic cancer cells. Cancer cells overexpressing CBD or lacking RhoC had reduced p130Cas phosphorylation and Rac1 activation, resulting in an inhibition of migration and invasion in vitro. The activity of Src and the activation of its downstream targets FAK, Pyk2, Ras and extracellular signal-regulated kinase (Erk)1/2 were also impaired. A reduction in α5-integrin expression, which is required for binding to fibronectin and thus cell migration and survival, was observed in CBD-expressing cells and cells lacking RhoC. As a result of these defects, CBD-expressing melanoma cells had a reduced ability to metastasize in recipient mice, and impaired extravasation and survival in secondary sites in chicken embryos. Our data indicate that interaction between Cav1 and Rho-GTPases (most likely RhoC but not RhoA) promotes metastasis by stimulating α5-integrin expression and regulating the Src-dependent activation of p130Cas/Rac1, FAK/Pyk2 and Ras/Erk1/2 signaling cascades
Bioreactors as engineering support to treat cardiac muscle and vascular disease
Cardiovascular disease is the leading cause of morbidity and mortality in the Western World. The inability of fully differentiated, load-bearing cardiovascular tissues to in vivo regenerate and the limitations of the current treatment therapies greatly motivate the efforts of cardiovascular tissue engineering to become an effective clinical strategy for injured heart and vessels. For the effective production of organized and functional cardiovascular engineered constructs in vitro, a suitable dynamic environment is essential, and can be achieved and maintained within bioreactors. Bioreactors are technological devices that, while monitoring and controlling the culture environment and stimulating the construct, attempt to mimic the physiological milieu. In this study, a review of the current state of the art of bioreactor solutions for cardiovascular tissue engineering is presented, with emphasis on bioreactors and biophysical stimuli adopted for investigating the mechanisms influencing cardiovascular tissue development, and for eventually generating suitable cardiovascular tissue replacements
- …