34 research outputs found

    Inferential NMR/X-ray-based structure determination of a dibenzo[a,d]cycloheptenone inhibitor-p38a MAP kinase complex in solution.

    Get PDF
    Complex problem: The crystal structure of p38α mitogen-activated protein kinase in complex with a dibenzo[a,d]cycloheptenone inhibitor was found to be incompatible with NMR data of the same complex in solution. By using inferential structure determination (ISD) with restraints from X-ray crystallography and NMR spectra, a structure that is compatible with both data sets and very close to the X-ray crystal structure was generated (see picture)

    Long-wave infrared integrated resonators in the 7.5-9 mu m wavelength range

    Get PDF
    We present broadband on-chip resonators based on SiGe graded-index waveguides operating in the long-wave infrared spectral range from 7.5 to 9.0 mu m wavelength range. A quality factor up to 10(5) has been measured, while an intrinsic quality factor of 1.13 x 10(5) has been extracted from the measurements. Thermal tuning of the phase in the micro-ring has been used to overcome the limitation of the experimental setup in terms of spectral resolution. These results pave the way toward the development of integrated frequency comb operating in the long-wave infrared range

    1H, 13C and 15N resonance assignments of the Calmodulin-Munc13-1 peptide complex

    Get PDF
    Ca2+-Calmodulin binding to the variable N-terminal region of the diacylglycerol/phorbol ester-binding UNC13/Munc13 family of proteins modulates the short-term synaptic plasticity characteristics in neurons. Here, we report the sequential backbone and side chain resonance assignment of the Ca2+-Calmodulin/Munc13-1458–492 peptide complex at pH 6.8 and 35°C (BMRB No. 15470)

    Gene Expression Profiles of Chicken Embryo Fibroblasts in Response to Salmonella Enteritidis Infection

    Get PDF
    The response of chicken to non-typhoidal Salmonella infection is becoming well characterised but the role of particular cell types in this response is still far from being understood. Therefore, in this study we characterised the response of chicken embryo fibroblasts (CEFs) to infection with two different S. Enteritidis strains by microarray analysis. The expression of chicken genes identified as significantly up- or down-regulated (≄3-fold) by microarray analysis was verified by real-time PCR followed by functional classification of the genes and prediction of interactions between the proteins using Gene Ontology and STRING Database. Finally the expression of the newly identified genes was tested in HD11 macrophages and in vivo in chickens. Altogether 19 genes were induced in CEFs after S. Enteritidis infection. Twelve of them were also induced in HD11 macrophages and thirteen in the caecum of orally infected chickens. The majority of these genes were assigned different functions in the immune response, however five of them (LOC101750351, K123, BU460569, MOBKL2C and G0S2) have not been associated with the response of chicken to Salmonella infection so far. K123 and G0S2 were the only 'non-immune' genes inducible by S. Enteritidis in fibroblasts, HD11 macrophages and in the caecum after oral infection. The function of K123 is unknown but G0S2 is involved in lipid metabolism and in ÎČ-oxidation of fatty acids in mitochondria

    The anti-bacterial iron-restriction defence mechanisms of egg white; the potential role of three lipocalin-like proteins in resistance against Salmonella

    Get PDF
    Salmonella enterica serovar Enteritidis (SE) is the most frequently-detected Salmonella in foodborne outbreaks in the European Union. Among such outbreaks, egg and egg products were identified as the most common vehicles of infection. Possibly, the major antibacterial property of egg white is iron restriction, which results from the presence of the iron-binding protein, ovotransferrin. To circumvent iron restriction, SE synthesise catecholate siderophores (i.e. enterobactin and salmochelin) that can chelate iron from host iron-binding proteins. Here, we highlight the role of lipocalin-like proteins found in egg white that could enhance egg-white iron restriction through sequestration of certain siderophores, including enterobactin. Indeed, it is now apparent that the egg-white lipocalin, Ex-FABP, can inhibit bacterial growth via its siderophore-binding capacity in vitro. However, it remains unclear whether ex-FABP performs such a function in egg white or during bird infection. Regarding the two other lipocalins of egg white (Cal-γ and α-1-glycoprotein), there is currently no evidence to indicate that they sequester siderophores
    corecore