20 research outputs found

    The JCMT BISTRO Survey: Multi-wavelength polarimetry of bright regions in NGC 2071 in the far-infrared/submillimetre range, with POL-2 and HAWC+

    Get PDF
    Polarized dust emission is a key tracer in the study of interstellar medium and of star formation. The observed polarization, however, is a product of magnetic field structure, dust grain properties and grain alignment efficiency, as well as their variations in the line of sight, making it difficult to interpret polarization unambiguously. The comparison of polarimetry at multiple wavelengths is a possible way of mitigating this problem. We use data from HAWC+/SOFIA and from SCUBA-2/POL-2 (from the BISTRO survey) to analyse the NGC 2071 molecular cloud at 154, 214 and 850 μm. The polarization angle changes significantly with wavelength over part of NGC 2071, suggesting a change in magnetic field morphology on the line of sight as each wavelength best traces different dust populations. Other possible explanations are the existence of more than one polarization mechanism in the cloud or scattering from very large grains. The observed change of polarization fraction with wavelength, and the 214-to-154 μm polarization ratio in particular, are difficult to reproduce with current dust models under the assumption of uniform alignment efficiency. We also show that the standard procedure of using monochromatic intensity as a proxy for column density may produce spurious results at HAWC+ wavelengths. Using both long-wavelength (POL-2, 850 μm) and short-wavelength (HAWC+, ≲200μm) polarimetry is key in obtaining these results. This study clearly shows the importance of multi-wavelength polarimetry at submillimeter bands to understand the dust properties of molecular clouds and the relationship between magnetic field and star formation

    The Twisted Magnetic Field of the Protobinary L483

    Get PDF
    We present H-band (1.65 μm) and SOFIA HAWC+ 154 μm polarization observations of the low-mass core L483. Our H-band observations reveal a magnetic field that is overwhelmingly in the E–W direction, which is approximately parallel to the bipolar outflow that is observed in scattered IR light and in single-dish 12CO observations. From our 154 μm data, we infer a ∼45° twist in the magnetic field within the inner 5″ (1000 au) of L483. We compare these new observations with published single-dish 350 μm polarimetry and find that the 10,000 au scale H-band data match the smaller-scale 350 μm data, indicating that the collapse of L483 is magnetically regulated on these larger scales. We also present high-resolution 1.3 mm Atacama Large Millimeter/submillimeter Array data of L483 that reveals it is a close binary star with a separation of 34 au. The plane of the binary of L483 is observed to be approximately parallel to the twisted field in the inner 1000 au. Comparing this result to the ∼1000 au protostellar envelope, we find that the envelope is roughly perpendicular to the 1000 au HAWC+ field. Using the data presented, we speculate that L483 initially formed as a wide binary and the companion star migrated to its current position, causing an extreme shift in angular momentum thereby producing the twisted magnetic field morphology observed. More observations are needed to further test this scenario

    The magnetic field in the Milky Way filamentary bone G47

    Get PDF
    Funding: R.J.S. acknowledges funding from an STFC ERF (grant ST/N00485X/1).Star formation primarily occurs in filaments where magnetic fields are expected to be dynamically important. The largest and densest filaments trace the spiral structure within galaxies. Over a dozen of these dense (∼104 cm−3) and long (>10 pc) filaments have been found within the Milky Way, and they are often referred to as "bones." Until now, none of these bones has had its magnetic field resolved and mapped in its entirety. We introduce the SOFIA legacy project FIELDMAPS which has begun mapping ∼10 of these Milky Way bones using the HAWC+ instrument at 214 μm and 18′′.2 resolution. Here we present a first result from this survey on the ∼60 pc long bone G47. Contrary to some studies of dense filaments in the Galactic plane, we find that the magnetic field is often not perpendicular to the spine (i.e., the center line of the bone). Fields tend to be perpendicular in the densest areas of active star formation and more parallel or random in other areas. The average field is neither parallel nor perpendicular to the Galactic plane or the bone. The magnetic field strengths along the spine typically vary from ∼20 to ∼100 μG. Magnetic fields tend to be strong enough to suppress collapse along much of the bone, but for areas that are most active in star formation, the fields are notably less able to resist gravitational collapse.Peer reviewe

    The JCMT BISTRO Survey: multiwavelength polarimetry of bright regions in NGC 2071 in the far-infrared/submillimetre range, with POL-2 and HAWC+

    Get PDF
    Polarized dust emission is a key tracer in the study of interstellar medium and of star formation. The observed polarization, however, is a product of magnetic field structure, dust grain properties, and grain alignment efficiency, as well as their variations in the line of sight, making it difficult to interpret polarization unambiguously. The comparison of polarimetry at multiple wavelengths is a possible way of mitigating this problem. We use data from HAWC+ /SOFIA and from SCUBA-2/POL-2 (from the BISTRO survey) to analyse the NGC 2071 molecular cloud at 154, 214, and 850 μm. The polarization angle changes significantly with wavelength over part of NGC 2071, suggesting a change in magnetic field morphology on the line of sight as each wavelength best traces different dust populations. Other possible explanations are the existence of more than one polarization mechanism in the cloud or scattering from very large grains. The observed change of polarization fraction with wavelength, and the 214-to-154 μm polarization ratio in particular, are difficult to reproduce with current dust models under the assumption of uniform alignment efficiency. We also show that the standard procedure of using monochromatic intensity as a proxy for column density may produce spurious results at HAWC+wavelengths. Using both long-wavelength (POL-2, 850 μm) and short-wavelength (HAWC+, ≲200μm) polarimetry is key in obtaining these results. This study clearly shows the importance of multi-wavelength polarimetry at submillimetre bands to understand the dust properties of molecular clouds and the relationship between magnetic field and star formation

    The JCMT BISTRO Survey: Magnetic Fields Associated with a Network of Filaments in NGC 1333

    No full text
    We present new observations of the active star formation region NGC 1333 in the Perseus molecular cloud complex from the James Clerk Maxwell TelescopeB-Fields In Star-forming Region Observations (BISTRO) survey with the POL-2 instrument. The BISTRO data cover the entire NGC 1333 complex (similar to 1.5 pc x 2 pc) at 0.02 pc resolution and spatially resolve the polarized emission from individual filamentary structures for the first time. The inferred magnetic field structure is complex as a whole, with each individual filament aligned at different position angles relative to the local field orientation. We combine the BISTRO data with low- and high- resolution data derived from Planck and interferometers to study the multiscale magnetic field structure in this region. The magnetic field morphology drastically changes below a scale of similar to 1 pc and remains continuous from the scales of filaments (similar to 0.1 pc) to that of protostellar envelopes (similar to 0.005 pc or similar to 1000 au). Finally, we construct simple models in which we assume that the magnetic field is always perpendicular to the long axis of the filaments. We demonstrate that the observed variation of the relative orientation between the filament axes and the magnetic field angles are well reproduced by this model, taking into account the projection effects of the magnetic field and filaments relative to the plane of the sky. These projection effects may explain the apparent complexity of the magnetic field structure observed at the resolution of BISTRO data toward the filament network

    Magnetic fields and outflows in the large Bok globule CB 54

    No full text
    We have observed the large Bok globule CB 54 in 850-mu m polarized light using the POL-2 polarimeter on the James Clerk Maxwell Telescope (JCMT). We find that the magnetic field in the periphery of the globule shows a significant, ordered deviation from the mean-field direction in the globule centre. This deviation appears to correspond with the extended but relatively weak (CO)-C-12 outflow emanating from the Class 0 sources at the centre of the globule. Energetics analysis suggests that if the outflow is reshaping the magnetic field in the globule's periphery, then we can place an upper limit of < 27 mu G on the magnetic field strength in the globule's periphery. Comparison with archival Planck and CARMA measurements shows that the field in the centre of the globule is consistent over several orders of magnitude in size scale, and oriented parallel to the density structure in the region in projection. We thus hypothesize that while non-thermal motions in the region may be sub-Alfvenic, the magnetic field is subdominant to gravity over a wide range of size scales. Our results suggest that even a relatively weak outflow may be able to significantly reshape magnetic fields in star-forming regions on scales >0.1 pc.N

    SOFIA observations of 30 Doradus: II -- Magnetic fields and large scale gas kinematics

    Full text link
    The heart of the Large Magellanic Cloud, 30 Doradus, is a complex region with a clear core-halo structure. Feedback from the stellar cluster R\,136 has been shown to be the main source of energy creating multiple pc-scale expanding-shells in the outer region, and carving a nebula core in proximity of the ionization source. We present the morphology and strength of the magnetic fields (B-fields) of 30 Doradus inferred from the far-infrared polarimetric observations by SOFIA/HAWC+ at 89, 154, and 214μ\,\mum. The B-field morphology is complex, showing bending structures around R\,136. In addition, we use high spectral and angular resolution [\textsc{CII}] observations from SOFIA/GREAT and CO(2-1) from APEX. The kinematic structure of the region correlates with the B-field morphology, and shows evidences for multiple expanding shells. Our B-field strength maps, estimated using the Davis-Chandrasekhar-Fermi method and structure function, show variations across the cloud within a maximum of 600, 450, and 350μ\,\muG at 89, 154, and 214μ\,\mum, respectively. We estimated that the majority of the 30 Doradus clouds are sub-critical and sub-Alfv\'enic. The probability distribution function of the gas density shows that the turbulence is mainly compressively driven, while the plasma beta parameter indicates supersonic turbulence. We show that the B-field is sufficient to hold the cloud structure integrity under feedback from R\,136. We suggest that supersonic compressive turbulence enables the local gravitational collapse and triggers a new generation of stars to form. The gas velocity gradients are likely to confirm these results.Comment: 25 pages, 17 figures, submitted to Ap

    POL-2: The SCUBA-2 Polarimeter

    No full text
    The SCUBA-2 polarimeter is expected to be the most sensitive instrument for the detection of polarized radiation in the submillimeter regime. This will be possible by taking advantage of the extra sensitivity, imaging speed and improved image fidelity of the new SCUBA-2 camera which is being commissioned now for use on the James-Clerk-Maxwell Telescope (JCMT). POL-2 construction is now complete and the instrument has been delivered and installed on the telescope. A general update of the instrument and its capabilities are presented. Its optical and mechanical characteristics are summarized and the expected performance is compared to previous polarimetry experiments on the JCMT. Rapid modulation to eliminate atmospheric effects is being implemented
    corecore