65 research outputs found

    Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays

    Full text link
    Average charged multiplicities have been measured separately in bb, cc and light quark (u,d,su,d,s) events from Z0Z^0 decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of bb and light quark events, and reconstructed charmed mesons were used to select cc quark events. We measured the charged multiplicities: nˉuds=20.21±0.10(stat.)±0.22(syst.)\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.}), nˉc=21.28±0.46(stat.)−0.36+0.41(syst.)\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ^{+0.41}_{-0.36}(\rm{syst.}) nˉb=23.14±0.10(stat.)−0.37+0.38(syst.)\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ^{+0.38}_{-0.37}(\rm{syst.}), from which we derived the differences between the total average charged multiplicities of cc or bb quark events and light quark events: Δnˉc=1.07±0.47(stat.)−0.30+0.36(syst.)\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})^{+0.36}_{-0.30}(\rm{syst.}) and Δnˉb=2.93±0.14(stat.)−0.29+0.30(syst.)\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})^{+0.30}_{-0.29}(\rm{syst.}). We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters

    Transfusion strategies for major haemorrhage in trauma.

    No full text
    This is the peer reviewed version of the following article: Curry, N. S. and Davenport, R. (2018), Transfusion strategies for major haemorrhage in trauma. Br J Haematol. doi:10.1111/bjh.15737, which has been published in final form at https://doi.org/10.1111/bjh.15737. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.Trauma is a leading cause of death worldwide in persons under 44 years of age, and uncontrolled haemorrhage is the most common preventable cause of death in this patient group. The transfusion management of trauma haemorrhage is unrecognisable from 20 years ago. Changes in clinical practice have been driven primarily by an increased understanding of the pathophysiology of trauma-induced coagulopathy (TIC), which is associated with poor clinical outcomes, including a 3- to 4-fold increased risk of death. Targeting this coagulopathy alongside changes to surgical and anaesthetic practices (an overarching strategy known as damage control surgery/damage control resuscitation) has led to a significant reduction in mortality rates over the last two decades. This narrative review will discuss the transfusion practices that are currently used for trauma haemorrhage and the evidence that supports these practices

    Problemi tra terapia con dabigatran e monitoraggio di laboratorio

    No full text
    • …
    corecore