355 research outputs found

    Socio-economic utility and chemical potential

    Full text link
    In statistical physics, the conservation of particle number results in the equalization of the chemical potential throughout a system at equilibrium. In contrast, the homogeneity of utility in socio-economic models is usually thought to rely on the competition between individuals, leading to Nash equilibrium. We show that both views can be reconciled by introducing a notion of chemical potential in a wide class of socio-economic models, and by relating it in a direct way to the equilibrium value of the utility. This approach also allows the dependence of utility across the system to be determined when agents take decisions in a probabilistic way. Numerical simulations of a urban economic model also suggest that our result is valid beyond the initially considered class of solvable models.Comment: 6 pages, 3 figures, final versio

    Toward homochiral protocells in noncatalytic peptide systems

    Full text link
    The activation-polymerization-epimerization-depolymerization (APED) model of Plasson et al. has recently been proposed as a mechanism for the evolution of homochirality on prebiotic Earth. The dynamics of the APED model in two-dimensional spatially-extended systems is investigated for various realistic reaction parameters. It is found that the APED system allows for the formation of isolated homochiral proto-domains surrounded by a racemate. A diffusive slowdown of the APED network such as induced through tidal motion or evaporating pools and lagoons leads to the stabilization of homochiral bounded structures as expected in the first self-assembled protocells.Comment: 10 pages, 5 figure

    Unravelling the evolution of Africa's drainage basins through a widespread freshwater fish, the African sharptooth catfish Clarias gariepinus

    Get PDF
    Aim The formation history of Africa's current river basins remains largely unknown. In order to date changes in landscape and climate, we studied the biogeography of the African freshwater fish with the largest natural distribution. We also validated biogeographical units. Location Continental Africa. Taxon Clarias gariepinus sl. Methods We investigated mitochondrial cytb sequences of 443 individuals from 97 localities, using a haplotype network and a genetic landscape analysis. We inferred a dated phylogeny using maximum likelihood and Bayesian inference approaches and reconstructed ancestral areas with S-DEC and S-DIVA models. Microsatellite genotyping complemented the mitochondrial approach in the Congo basin, where the latter revealed complex patterns. Results Limited differentiation is found in northern and south-western Africa, and sharp genetic differentiation in the continent's east and centre. Populations with affinities to neighbouring basins occur at the edges of the Congo province. High diversity exists in the south of the Congo basin. The Zambezi province is partitioned into eastern, central and western sectors. In the east, specimens were related to those from the Congo. In the west, they were similar to Southern representatives. Phylogenetic inference placed the origin of C. gariepinus in the East Coast, with intraspecific diversification starting around the Great Lakes. These events occurred ca. 4.8-1.65 and 2.3-0.8 MYA respectively. Main conclusions Clades of C. gariepinus sl. show a clear geographical signature. The origin of C. gariepinus in the East Coast and diversification around the Great Lakes coincided with the periods of increased aridity. Low genetic differentiation in northern and southern Africa may result from connectivity during recent periods of higher rainfall. In contrast to other widespread African freshwater fish, colonization rather than extinction seemed to mediate distribution patterns. This can be explained by a high ecological tolerance. We highlight the species' suitability to study landscape and climate evolution at various scales.Peer reviewe

    Prolonged Siberian heat of 2020 almost impossible without human influence

    Get PDF
    Over the first half of 2020, Siberia experienced the warmest period from January to June since records began and on the 20th of June the weather station at Verkhoyansk reported 38 °C, the highest daily maximum temperature recorded north of the Arctic Circle. We present a multi-model, multi-method analysis on how anthropogenic climate change affected the probability of these events occurring using both observational datasets and a large collection of climate models, including state-of-the-art higher-resolution simulations designed for attribution and many from the latest generation of coupled ocean-atmosphere models, CMIP6. Conscious that the impacts of heatwaves can span large differences in spatial and temporal scales, we focus on two measures of the extreme Siberian heat of 2020: January to June mean temperatures over a large Siberian region and maximum daily temperatures in the vicinity of the town of Verkhoyansk. We show that human-induced climate change has dramatically increased the probability of occurrence and magnitude of extremes in both of these (with lower confidence for the probability for Verkhoyansk) and that without human influence the temperatures widely experienced in Siberia in the first half of 2020 would have been practically impossible

    Why did I not prepare for this? The politics of negotiating fieldwork access, identity, and methodology in researching microfinance institutions

    Get PDF
    It has been increasingly recognized that undertaking qualitative research can pose many challenges for researchers. However, scanty literature focuses directly on the experiences of doctoral research students from developing countries studying in Western Europe and other similar geographic regions, and the challenges of doing fieldwork when they return “back home”. In this article, I use my experiences in the process of undertaking PhD fieldwork on two donor-funded microfinance institutions located in Zambia to demonstrate that doctoral students from specific regions (Africa in particular) undertaking research in their native countries can struggle to manage and make sense of the challenges and identity issues raised in their “familiar” environments. I also present a detailed discussion of how various gatekeepers and participants facilitated access, identity alteration, and the impact of insider–outsider positionality on collected data. It is concluded that organizational “politics” and local context can have significant bearing on power relationships, identities of researchers, and methodological preferences

    Cryptic Diversity of African Tigerfish (Genus Hydrocynus) Reveals Palaeogeographic Signatures of Linked Neogene Geotectonic Events

    Get PDF
    The geobiotic history of landscapes can exhibit controls by tectonics over biotic evolution. This causal relationship positions ecologically specialized species as biotic indicators to decipher details of landscape evolution. Phylogeographic statistics that reconstruct spatio-temporal details of evolutionary histories of aquatic species, including fishes, can reveal key events of drainage evolution, notably where geochronological resolution is insufficient. Where geochronological resolution is insufficient, phylogeographic statistics that reconstruct spatio-temporal details of evolutionary histories of aquatic species, notably fishes, can reveal key events of drainage evolution. This study evaluates paleo-environmental causes of mitochondrial DNA (mtDNA) based phylogeographic records of tigerfishes, genus Hydrocynus, in order to reconstruct their evolutionary history in relation to landscape evolution across Africa. Strong geographical structuring in a cytochrome b (cyt-b) gene phylogeny confirms the established morphological diversity of Hydrocynus and reveals the existence of five previously unknown lineages, with Hydrocynus tanzaniae sister to a clade comprising three previously unknown lineages (Groups B, C and D) and H. vittatus. The dated phylogeny constrains the principal cladogenic events that have structured Hydrocynus diversity from the late Miocene to the Plio-Pleistocene (ca. 0–16 Ma). Phylogeographic tests reveal that the diversity and distribution of Hydrocynus reflects a complex history of vicariance and dispersals, whereby range expansions in particular species testify to changes to drainage basins. Principal divergence events in Hydrocynus have interfaced closely with evolving drainage systems across tropical Africa. Tigerfish evolution is attributed to dominant control by pulses of geotectonism across the African plate. Phylogenetic relationships and divergence estimates among the ten mtDNA lineages illustrates where and when local tectonic events modified Africa's Neogene drainage. Haplotypes shared amongst extant Hydrocynus populations across northern Africa testify to recent dispersals that were facilitated by late Neogene connections across the Nilo-Sahelian drainage. These events in tigerfish evolution concur broadly with available geological evidence and reveal prominent control by the African Rift System, evident in the formative events archived in phylogeographic records of tigerfish

    A single saddle model for the beta-relaxation in supercooled liquids

    Full text link
    We study the Langevin equation for a single harmonic saddle as an elementary model for the beta-relaxation in supercooled liquids close to Tc. The input of the theory is the spectrum of the eigenvalues of the dominant stationary points at a given temperature. We prove in general the existence of a time-scale t_eps, which is uniquely determined by the spectrum, but is not simply related to the fraction of negative eigenvalues. The mean square displacement develops a plateau of length t_eps, such that a two-step relaxation is obtained if t_eps diverges at Tc. We analyze the specific case of a spectrum with bounded left tail, and show that in this case the mean square displacement has a scaling dependence on time identical to the beta-relaxation regime of Mode Coupling Theory, with power law approach to the plateau and power law divergence of t_eps at Tc.Comment: Revised versio

    The Saccharomyces cerevisiae Histone Chaperone Rtt106 Mediates the Cell Cycle Recruitment of SWI/SNF and RSC to the HIR-Dependent Histone Genes

    Get PDF
    In Saccharomyces cerevisiae, three out of the four histone gene pairs (HTA1-HTB1, HHT1-HHF1, and HHT2-HHF2) are regulated by the HIR co-repressor complex. The histone chaperone Rtt106 has recently been shown to be present at these histone gene loci throughout the cell cycle in a HIR- and Asf1-dependent manner and involved in their transcriptional repression. The SWI/SNF and RSC chromatin remodeling complexes are both recruited to the HIR-dependent histone genes; SWI/SNF is required for their activation in S phase, whereas RSC is implicated in their repression outside of S phase. Even though their presence at the histone genes is dependent on the HIR complex, their specific recruitment has not been well characterized. In this study we focused on characterizing the role played by the histone chaperone Rtt106 in the cell cycle-dependent recruitment of SWI/SNF and RSC complexes to the histone genes.Using GST pull-down and co-immunoprecipitation assays, we showed that Rtt106 physically interacts with both the SWI/SNF and RSC complexes in vitro and in vivo. We then investigated the function of this interaction with respect to the recruitment of these complexes to HIR-dependent histone genes. Using chromatin immunoprecipitation assays (ChIP), we found that Rtt106 is important for the recruitment of both SWI/SNF and RSC complexes to the HIR-dependent histone genes. Furthermore, using synchronized cell cultures, we showed by ChIP assays that the Rtt106-dependent SWI/SNF recruitment to these histone gene loci is cell cycle regulated and restricted to late G1 phase just before the peak of histone gene expression in S phase.Overall, these data strongly suggest that the interaction between the histone chaperone Rtt106 and both the SWI/SNF and RSC chromatin remodeling complexes is important for the cell cycle regulated recruitment of these two complexes to the HIR-dependent histone genes
    corecore