73 research outputs found

    Metagenomics-based proficiency test of smoked salmon spiked with a mock community

    Get PDF
    An inter-laboratory proficiency test was organized to assess the ability of participants to perform shotgun metagenomic sequencing of cold smoked salmon, experimentally spiked with a mock community composed of six bacteria, one parasite, one yeast, one DNA, and two RNA viruses. Each participant applied its in-house wet-lab workflow(s) to obtain the metagenomic dataset(s), which were then collected and analyzed using MG-RAST. A total of 27 datasets were analyzed. Sample pre-processing, DNA extraction protocol, library preparation kit, and sequencing platform, influenced the abundance of specific microorganisms of the mock community. Our results highlight that despite differences in wet-lab protocols, the reads corresponding to the mock community members spiked in the cold smoked salmon, were both detected and quantified in terms of relative abundance, in the metagenomic datasets, proving the suitability of shotgun metagenomic sequencing as a genomic tool to detect microorganisms belonging to different domains in the same food matrix. The implementation of standardized wet-lab protocols would highly facilitate the comparability of shotgun metagenomic sequencing dataset across laboratories and sectors. Moreover, there is a need for clearly defining a sequencing reads threshold, to consider pathogens as detected or undetected in a food sample

    Proficiency Testing of Metagenomics-Based Detection of Food-Borne Pathogens Using a Complex Artificial Sequencing Dataset

    Get PDF
    Metagenomics-based high-throughput sequencing (HTS) enables comprehensive detection of all species comprised in a sample with a single assay and is becoming a standard method for outbreak investigation. However, unlike real-time PCR or serological assays, HTS datasets generated for pathogen detection do not easily provide yes/no answers. Rather, results of the taxonomic read assignment need to be assessed by trained personnel to gain information thereof. Proficiency tests are important instruments of validation, harmonization, and standardization. Within the European Union funded project COMPARE [COllaborative Management Platform for detection and Analyses of (Re-) emerging and foodborne outbreaks in Europe], we conducted a proficiency test to scrutinize the ability to assess diagnostic metagenomics data. An artificial dataset resembling shotgun sequencing of RNA from a sample of contaminated trout was provided to 12 participants with the request to provide a table with per-read taxonomic assignments at species level and a report with a summary and assessment of their findings, considering different categories like pathogen, background, or contaminations. Analysis of the read assignment tables showed that the software used reliably classified the reads taxonomically overall. However, usage of incomplete reference databases or inappropriate data pre-processing caused difficulties. From the combination of the participants\u2019 reports with their read assignments, we conclude that, although most species were detected, a number of important taxa were not or not correctly categorized. This implies that knowledge of and awareness for potentially dangerous species and contaminations need to be improved, hence, capacity building for the interpretation of diagnostic metagenomics datasets is necessary

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of 2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    Observation of a sudden cessation of a very-high-energy gamma-ray flare in PKS 1510-089 with H.E.S.S. and MAGIC in May 2016

    Get PDF
    The flat spectrum radio quasar (FSRQ) PKS 1510-089 is known for its complex multiwavelength behavior, and is one of only a few FSRQs detected at very high energy (VHE, E >100 GeV) -rays. VHE -ray observations with H.E.S.S. and MAGIC during late May and early June 2016 resulted in the detection of an unprecedented flare, which reveals for the first time VHE -ray intranight variability in this source. While a common variability timescale of 1.5 hr is found, there is a significant deviation near the end of the flare with a timescale of ∼ 20 min marking the cessation of the event. The peak flux is nearly two orders of magnitude above the low-level emission. For the first time, curvature is detected in the VHE -ray spectrum of PKS 1510-089, which is fully explained through absorption by the extragalactic background light. Optical R-band observations with ATOM reveal a counterpart of the -ray flare, even though the detailed flux evolution differs from the VHE lightcurve. Interestingly, a steep flux decrease is observed at the same time as the cessation of the VHE flare. In the high energy (HE, E >100 MeV) -ray band only a moderate flux increase is observed with Fermi-LAT, while the HE -ray spectrum significantly hardens up to a photon index of 1.6. A search for broad-line region (BLR) absorption features in the -ray spectrum indicates that the emission region is located outside of the BLR. Radio VLBI observations reveal a fast moving knot interacting with a standing jet feature around the time of the flare. As the standing feature is located ∼ 50 pc from the black hole, the emission region of the flare may have been located at a significant distance from the black hole. If this correlation is indeed true, VHE rays have been produced far down the jet where turbulent plasma crosses a standing shock.Accepted manuscrip

    PLASMA DESORPTION MASS SPECTROMETRY : THE STABILITY OF MOLECULAR IONS

    No full text
    Les largeurs de pics et les intensités relatives des ions moléculaires mono et multi-chargés apparaissant dans les spectres de masse par plasma désorption sont utilisées comme une sonde pour la stabilité des ions moléculaires. Deux peptides qui ont des poids moléculaires et des structures tertiaires identiques mais des structures primaires et des points iso-électriques différents ont été préparés en solutions de pH divers avant d'être adsorbés sur nitrocellulose. Les largeurs de pics des ions moléculaires résultants ont été optimisées près de leurs points iso-électriques respectifs. Des études similaires ont été entreprises en ajoutant du glutathion, une matrice qui a des effets sur les spectres PDMS equivalents à la nitrocellulose.The peak widths and relative intensities of the singly- and multiply-charged molecular ions appearing in plasma desorption mass spectra are used as a probe for the stability of molecular ions. Two peptides, lysozyme and lactalbumin, which have similar molecular weights and tertiary structures, but different primary structures and isoelectric points, were prepared in solutions of different pH, before adsorption to nitrocellulose foils. The peak widths of the resultant molecular ion signals were minimized near their respective isoelectric points, which is consistent with reports on the stability of their tertiary structures and/or enzymatic activities near the isoelectric point. Similar studies were carried out with the addition of glutathione, a matrix which has effects on PDMS spectra similar to that of the nitrocellulose surface
    corecore