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Abstract: An inter-laboratory proficiency test was organized to assess the ability of participants to
perform shotgun metagenomic sequencing of cold smoked salmon, experimentally spiked with a
mock community composed of six bacteria, one parasite, one yeast, one DNA, and two RNA viruses.
Each participant applied its in-house wet-lab workflow(s) to obtain the metagenomic dataset(s),
which were then collected and analyzed using MG-RAST. A total of 27 datasets were analyzed. Sample
pre-processing, DNA extraction protocol, library preparation kit, and sequencing platform, influenced
the abundance of specific microorganisms of the mock community. Our results highlight that despite
differences in wet-lab protocols, the reads corresponding to the mock community members spiked in
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the cold smoked salmon, were both detected and quantified in terms of relative abundance, in the
metagenomic datasets, proving the suitability of shotgun metagenomic sequencing as a genomic tool
to detect microorganisms belonging to different domains in the same food matrix. The implementation
of standardized wet-lab protocols would highly facilitate the comparability of shotgun metagenomic
sequencing dataset across laboratories and sectors. Moreover, there is a need for clearly defining a
sequencing reads threshold, to consider pathogens as detected or undetected in a food sample.

Keywords: shotgun metagenomics; smoked salmon; proficiency test; experimentally spiked samples;
wet-lab protocols

1. Introduction

Foodborne illnesses associated with pathogenic microorganisms are a global public health and
economic challenge. In 2018, 26 European Member States reported 5146 food-borne and waterborne
outbreaks with 48,365 human cases and 21.2% increase in the overall number of outbreak-related deaths,
in comparison to 2017 [1]. The outbreaks with known causative agents were caused by bacteria (57.0%),
followed by bacterial toxins (24.2%), viruses (13.5%), other causative agents (4.3%), and parasites
(1.0%) [1]. The techniques used for the detection and characterization of foodborne pathogens in
food products evolved tremendously over the past several decades, but they generally focused on the
detection of a single pathogen or just a few pathogens at a time [2]. This analytical restriction hampers
the mapping of shifting microbial communities, which potentially affect the persistence of foodborne
pathogens in the food production chain [2,3], and can also result in pathogens being overlooked by
virtue of being novel or not being traditionally associated with a particular environment.

Shotgun metagenomics provides the potential for detection, identification, and characterization
of pathogens in food [4,5], in the food chain environment [2], as well as in animals and humans [6,7].
In addition to taxonomic assignment, shotgun metagenomics also provides functional insights,
through the detection of genetic markers, such as genes associated with antimicrobial resistance
and virulence-related properties [5]. However, at present, deconvoluting the metagenomic data to
definitively associate those markers with the same genome is still challenging [5,8].

Shotgun metagenomic sequencing includes a wet-lab part, followed by sequence data analysis.
Concerning the wet-lab protocols, comparative studies were performed to assess the implementation
of different strategies for sample handling [7,9], nucleic acid extraction [10], library preparation [11],
and sequencing [12]. Furthermore, specific assessments were done on working with contaminants [13],
host DNA [14], and low biomass specimens [6], defining ideal read depths for particular biological
specimens or food products, as well as defining the sequence number thresholds to confidently assign a
pathogenic etiology [15]. Nowadays, Giga bases of high-quality sequence data can be easily generated
at a comparatively low cost. Thus, performing high-throughput shotgun sequencing can result in a
large and complex dataset from which taxonomic composition and functional capacity of the entire
ecosystem under study can be determined [16].

Various pipelines for the pre-processing, assembly [17], clustering, and analyses are available
for metagenomic bioinformatics, such as IMP [18], MetAMOS [19], MG-Mapper [20], MG-RAST [21],
MOCAT2 [22], OneCodex [23], and RIEMS [24]. However, in some cases, the use of those pipelines
requires access to high performance computing facilities, as well as laboratory personnel that is
cross-trained in bioinformatics and biology, to generate the data and interpret the results obtained [8].

To access the suitability of shotgun metagenomics to detect and possibly quantify microorganisms
belonging to different domain in a food sample, a proficiency test (PT) was carried out as part of the
COMPARE project (www.compare-europe.eu), involving 11 participants from the EU and Singapore.
All participants received the same food sample spiked with a mock community composed of six bacteria,
three viruses, one parasite, and one yeast. Each participant processed the sample using in-house wet-lab
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protocol(s), up to the production of the metagenomic dataset(s). Metagenomic datasets were both
submitted to a COMPARE data-hub [25] and picked up or sent directly to the participant performing
the data analysis, using the MG-RAST metagenomics analysis server. The relative abundance of the
microorganisms of the mock community expected in each dataset was calculated, based on the number
of cells/viral genomes spiked in the food sample. Moreover, the detection of each microorganism
was evaluated, considering the presence of at least 1, 5, or 10 corresponding reads enumerated in
MG-RAST. The DNA metagenomic datasets were ranked according to the distance between the relative
abundance of the microorganisms of the mock community in each dataset, and the expected values.
The best-performing wet-lab protocols generating the metagenomic datasets closer to the expected
values were then discussed.

2. Materials and Methods

2.1. Samples

An aliquot of cold smoked salmon was cut in small pieces (approximately 1–2 mm in
width/length/depth), using a sterile scalpel and sterile petri dish. An amount of 0.2 g was transferred
to individual sterile Nunc screw cap tubes. Subsequently, each tube was kept on ice and spiked with
50 µL of a mock microbial community, consisting of six bacteria, one parasite, one fungus, and 10 µL of
heat-inactivated viruses (one DNA and two RNA viruses) (Table 1).

Table 1. Composition of the mock community used to spike the samples of cold smoked salmon
and concentration of each microorganism. Each concentration corresponded to an expected relative
abundance calculated by the number of cells of each spiked microorganism multiplied for the genome
size, as indicated in the GeneBank (https://www.ncbi.nlm.nih.gov/assembly), taking the value available
or the mean * of the different values available for the same strain. The relative abundances were
obtained by normalizing the resulting values to a sum of one.

Taxon (Genome Size) Number per Subsample
(Cells/Virus Genome Copies)

Expected Relative
Abundance Feature

Bacteria

Bacteroides fragilis NCTC 9343/DSM 2151
(5,241,700 bp) 5 × 107 0.065 Gram −

Escherichia coli ATCC 25922 (5,166,282 * bp) 5 × 107 0.064 Gram −
Fusobacterium nucleatum subsp. nucleatum
ATCC 25586/DSM 15,643 (2,177,300 * bp) 5 × 107 0.027 Gram −

Propionibacterium freudenreichii subsp.
Freudenreichii DSM 20271 (2,649,166 bp) 5 × 108 0.331 Gram +

Salmonella enterica subsp. enterica serovar
Typhimurium str. ATCC 14028S/DSM 19587

(4,964,097 bp)
5 × 107 0.062 Gram −

Staphylococcus aureus subsp. aureus NCTC 8325
(2,821,361 bp) 5 × 108 0.352 Gram +

Viruses

Bovine alphaherpesvirus 1 (135,098 *) 2.41 × 109 <0.001 ds DNA
Border disease virus isolate Gifhorn (12,325 bp) 6 × 106 <0.001 ssRNA

Bovine viral diarrhea virus type 1 isolate
NADL (12,578 bp) 3 × 105 <0.001 ssRNA

Eukaryota

Cryptosporidium parvum IOWA II isolate
(9,102,324 bp) 1 × 106 0.002

Saccharomyces cerevisiae S288C (12,157,105 bp) 5 × 106 0.015

The tubes were kept on ice during preparation. Cell counts of the bacteria and the fungus were
determined using a Petroff counting chamber, under a light microscope, counting cells in two diagonal
corners on two separately prepared slides. The parasite oocysts were obtained from Waterborne
Inc. in PBS, containing 1.2 × 108 cells (as determined by Fluorescence Activated Cell Sorting, by the
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provider). After spiking, each tube was vortex-mixed and placed at −80 ◦C, before shipping to each PT
participant with a freezer pack kept at −80 ◦C, until packaging. The frozen samples were supplemented
by another 50 µL of the virus mix, without additional mixing.

2.2. Laboratory Workflows of Participants

The wet-lab protocols used by the participants differed from each other. These are summarized in
Table 2 and are detailed in the supplementary material.

A total of 27 metagenomics datasets obtained by shotgun metagenomic sequencing of spiked
salmon were submitted as part of the PT. Among the 27 samples tested, 7 were not pre-processed
and directly submitted to nucleic acid extraction, while 9 were pre-processed by using a bead beating
protocol with TissueLyser, with modifications by each participant. Moreover, for M33 and M34,
two milliliter of glycine buffer 0.05 M (pH 9) were added to the spiked salmon and homogenized
in a potter grinding tube. Then, the pH was decreased to 3 by adding HCL. An equal volume of
chloroform-butanol (v/v) was added and mixed by vortexing. After centrifugation, the supernatant
was treated with Cat-Floc T (Calgon, Ellwood City, PA, USA) and precipitated with polyethylene glycol
6000 (PEG 6000) (Sigma, St. Quentin, France), for 1 h at 4 ◦C, and centrifuged for 20 min at 11,000× g
at 4 ◦C. The pellet was resuspended in 2 mL of glycine buffer and filtrated using a cascade of 5, 1.2,
and 0.45 mm filter pores (Minisart NML 17594, NML17593, PES16533, and PES16532). The recovered
filtrates were incubated for 1 h at 37 ◦C, with 2000 Units of OmniCleave EndonucleaseTM (Lucigen
corporation) and 100 mL of MgCl2 (100 mM). For M30, M31, and M32, the samples were centrifuged at
5000 rpm for 20 min at 4 ◦C, and the pellet was used for nucleic acid extraction. For M08, the sample was
homogenized in liquid nitrogen using a ceramic mortar and pestle, followed by the gradual addition
of 2.5 mL TE buffer. The homogenate was then centrifuged at 4000× g for 10 min and the supernatant
was filtered on a 0.45-µm disc HPF Millex syringe filter (Millipore, Cork, Ireland), followed by the
nuclease treatment. Subsequently, 200 µL of the sample were used for DNA extraction. For M11 and
M13, the samples were homogenized in liquid nitrogen, using a ceramic mortar and pestle, followed by
the gradual addition of 2.5 mL TE buffer. The homogenate was then centrifuged at 4000× g for 10 min,
and the supernatant was subjected to three cycles of the freeze–thaw method (M11: dry ice/100 ◦C;
M13: dry ice/37 ◦C) and submitted to DNA extraction. For M12, the sample was homogenized in
liquid nitrogen, using a ceramic mortar and pestle, followed by the gradual addition of 2.5 mL TE
buffer. The homogenate was then centrifuged at 4000× g for 10 min, and the supernatant was filtered
on a 0.45-µm disc HPF Millex syringe filter (Millipore, Cork, Ireland), followed by nuclease treatment.
Subsequently, 200 µL of the sample was transferred to a new tube and mixed with 600 µL of TRIzol
Reagent (Invitrogen, Carlsbad, CA, USA), 160 µL of chloroform, followed by RNA extraction. Finally,
for M27 and M28, the samples were submitted to a disintegration step, using the Covaris cryoPREP
CP02 [7].

For 18 samples, the target nucleic acid was DNA (Table 2). In 2 samples, the DNA was extracted
using the QIAamp Fast DNA Stool Mini Kit (Qiagen, Hilden Germany) and in 3, using the DNeasy
PowerSoil Microbial Kit (Qiagen). Moreover, in 5 samples, the DNA was extracted using the DNeasy
PowerFood Microbial Kit (Qiagen) and in 8 samples using the QIAamp DNA Mini Kit (Qiagen) or the
QIAamp UCP Pathogen Mini Kit (Qiagen). In M08, M11, and M13, the QIAamp DNA Mini Kit Qiagen
was associated to Tag labeling and random amplification (SISPA) [26].

In 9 samples, the target nucleic acid was RNA (Table 2). In one sample, the RNA was extracted using
the Direct-zol RNA Kit (Zimo Research) and in 2, the NucliSENS® miniMAG® (BioMérieux, Marcy
l’Etoile, France). Moreover, in 2 samples, the RNA was extracted using the QIAamp Viral RNA Mini
Kit (Qiagen) and in 4, the RNeasy Mini Kit (Qiagen). For M12, the use of the kit was associated to Tag
labeling and Sequence-Independent, Single-Primer-Amplification (SISPA). In 5 samples, the extracted
RNA was reverse transcibedusing the cDNA Synthesis System Kit (Roche, Basel, Switzerland), while in
4, the SuperScript IV Reverse Transcriptase (Invitrogen Thermo Fischer Scientific (Walthman, MA, USA)
was used.
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Table 2. Metagenomic datasets and corresponding wet-lab protocols. All protocols are detailed in the Supplementary Materials. Pre-processing protocols were
bead beating based protocols with TissueLyser (BBTL), no-processing (NO_PP), extraction with chloroform/butanol, Cat-Floc T, OmniCleave Endonuclease (PEGO),
centrifugation (C), liquid nitrogen, centrifugation and filtration in HPF Millex filter (HCFHN), and CryoPrep Covaris (CP). The pre-processing protocols were
categorized for the biostatistical analysis as no-processing (NO_PP), bead beating based protocols using TissueLyser (BBTL) and other pre-processing protocols
(OTHER_PP). The DNA was extracted by QIAamp Fast DNA Stool and DNeasy Power Soil (categorized as OTHER-EXD), DNeasy Power Food Microbial Kit
(PowerFood), QIAamp DNA Mini Kit with or without Sequence-Independent, Single-Primer-Amplification (SISPA), and QIAamp UCP Pathogen Mini Kit (categorized
as QIAamp). The RNA was extracted by the RNeasy Mini Kit with or without TRIzol and SISPA (categorized as RNeasy Mini), QIAamp Viral RNA Mini Kit (QIAampV),
NucliSENS® miniMAG® and Direct-zol RNA Kit (categorized as OTHER_EXR). The cDNA was generated using the cDNA Synthesis System Kit (cDNA SS) or the
SuperScript IV Reverse Transcriptase (SS IV RT). The libraries were prepared by Nextera™ XT DNA Library Prep kit, Nextera™ DNA Flex Library Preparation kit
(categorized as NexteraXT), NEBNext® Ultra™ II DNA Library Prep Kit for Illumina®, TruSeq® DNA Library Prep Kit and GeneRead DNA Library kit (categorized as
OTHER_L). The sequencing platforms were NextSeq500, HiSeq2500 (categorized as NextSeq500), MiniSeq, MiSeq, and Ion Torrent S5XL (categorized as OTHER_SP).

Metagenome
Dataset

Nucleic
Acid Pre-Processing Category

Label Extraction Kit Category
Label

cDNA
Generation Library Kit Category

Label
Sequencing

Strategy
Read

Length
Sequencing

Platform
Category

Label Gbp Workflow
Label

M06 DNA BBTL BBTL QIAamp Fast DNA Stool OTHER_EXD NexteraXT NexteraXT Paired-end 120 NextSeq 500 NextSeq 500 1.34 WF1
M15 DNA BBTL BBTL QIAamp Fast DNA Stool OTHER_EXD NexteraXT NexteraXT Paired-end 120 NextSeq 500 NextSeq 500 2.2 WF1

M24 DNA NO_PP NO_PP DNeasy PowerSoil OTHER_EXD NexteraXT NexteraXT Paired-end 150 NextSeq 500 NextSeq 500 8.95 WF2
M29 DNA NO_PP NO_PP DNeasy PowerSoil OTHER_EXD Nextera Flex NexteraXT Paired-end 150 MiniSeq OTHER_SP 3.43 WF2
M38 DNA NO_PP NO_PP DNeasy PowerSoil OTHER_EXD NexteraXT NexteraXT Paired-end 150 NextSeq 500 NextSeq 500 12.2 WF2

M33 RNA PEGO OTHER_PP NucliSENS MiniMag OTHER_EXR SS IV RT NEBNext OTHER_L Paired-end 150 MiSeq OTHER_SP 0.92 WF3
M34 RNA PEGO OTHER_PP NucliSENS MiniMag OTHER_EXR SS IV RT NEBNext OTHER_L Paired-end 150 MiSeq OTHER_SP 0.86 WF3

M16 DNA BBTL BBTL DNesasy PowerFood PowerFood NexteraXT NexteraXT Paired-end 120 NextSeq 500 NextSeq 500 1.83 WF4
M18 DNA BBTL BBTL DNesasy PowerFood PowerFood NexteraXT NexteraXT Paired-end 120 NextSeq 500 NextSeq 500 2.50 WF4

M23 RNA BBTL BBTL Direct-zol RNA OTHER_EXR cDNA SS TruSeq OTHER_L Paired-end 150 NextSeq 500 NextSeq 500 11.01 WF5

M30 DNA C OTHER_PP DNesasy PowerFood PowerFood NexteraXT NexteraXT Paired-end 150 NextSeq 500 NextSeq 500 7.97 WF6
M31 DNA C OTHER_PP DNesasy PowerFood PowerFood NexteraXT NexteraXT Paired-end 150 NextSeq 500 NextSeq 500 9.81 WF6
M32 DNA C OTHER_PP DNesasy PowerFood PowerFood NexteraXT NexteraXT Paired-end 150 NextSeq 500 NextSeq 500 8.44 WF6

M07 DNA NO_PP NO_PP QIAamp UCP Pathogen QIAamp NexteraXT NexteraXT Paired-end 120 NextSeq 500 NextSeq 500 1.03 WF7
M10 DNA NO_PP NO_PP QIAamp UCP Pathogen QIAamp NexteraXT NexteraXT Paired-end 120 NextSeq 500 NextSeq 500 1.77 WF7

M26 DNA BBTL BBTL QIAamp QIAamp TruSeq OTHER_L Paired-end 150 NextSeq 500 NextSeq 500 12.2 WF8
M36 DNA BBTL BBTL QIAamp QIAamp TruSeq OTHER_L Paired-end 250 HiSeq 2500 NextSeq 500 8.88 WF8

M25 RNA NO_PP NO_PP QIAamp Viral RNA QIAamp cDNA SS NexteraXT NexteraXT Paired-end 150 NextSeq 500 NextSeq 500 8.64 WF9

M37 RNA NO_PP NO_PP QIAamp Viral RNA QIAamp SS IV RT NexteraXT NexteraXT Paired-end 200 MiSeq OTHER_SP 8.84 WF10

M08 DNA HCFHN OTHER_PP QIAamp + SISPA QIAamp NexteraXT NexteraXT Paired-end 300 MiSeq OTHER_SP 1.99 WF11
M11 DNA HCFHN OTHER_PP QIAamp + SISPA QIAamp NexteraXT NexteraXT Paired-end 300 MiSeq OTHER_SP 2.07 WF11
M13 DNA HCFHN OTHER_PP QIAamp + SISPA QIAamp NexteraXT NexteraXT Paired-end 300 MiSeq OTHER_SP 2.62 WF11

M27 DNA CP OTHER_PP QIAamp QIAamp GeneRead OTHER_L Single-end 250 Ion Torrent S5XL OTHER_SP 2.14 WF12

M19 RNA BBTL BBTL RNeasy Mini kit RNeasy Mini cDNA SS NexteraXT NexteraXT Paired-end 120 NextSeq 500 NextSeq 500 4.95 WF13
M20 RNA BBTL BBTL RNeasy Mini kit RNeasy Mini cDNA SS NexteraXT NexteraXT Paired-end 120 NextSeq 500 NextSeq 500 5.06 WF13

M12 RNA HCFHN OTHER_PP RNeasy Mini + SISPA RNeasy Mini SS IV RT NexteraXT NexteraXT Paired-end 300 MiSeq OTHER_SP 2.63 WF14

M28 RNA CP OTHER_PP RNeasy Mini kit RNeasy Mini cDNA SS GeneRead OTHER_L Single-end 250 Ion Torrent S5XL OTHER_SP 2.25 WF15
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For the library preparation, 19 samples were processed using the Nextera™ XT DNA Library
Prep kit (Illumina) and in one, the Nextera™ DNA Flex Library Preparation kit (Illumina,
San Diego, CA, USA) was used. The libraries for the remaining 7 samples were prepared using
the TruSeq® DNA Library Prep Kit Illumina (n = 3), the NEBNext® Ultra™ II DNA Library Prep Kit
for Illumina® (New England BioLabs, Ipswich, MA, USA) (n = 2), and the GeneRead DNA Library kit
Qiagen (n = 2) (Table 2).

All samples were sequenced in paired-end, except two (Table 2), and the read lengths were
achieved by sequencing ranged between 120 and 300 bp (Table 2). A total of 16 samples were sequenced
on the NextSeq500 (Illumina), while the others were sequenced on the HiSeq2500 (Illumina) (n = 1),
MiSeq (Illumina) (n = 7), MiniSeq (Illumina) (n = 1), and Ion S5XL System (Thermo Fischer Scientifics)
(n = 2) (Table 2). The sequencing output associated with each dataset ranged between 0.86 and 12.2 Gbp.

2.3. Data Sharing

All metagenomic datasets included in this PT are publicly available on https://www.mg-rast.org/

mgmain.html?mgpage=project&project=mgp86519 in the MG-RAST server, under the project labelled
as Food metagenomic ring trial 2018. The metadata associated with the metagenomic datasets are
those detailed in Table 2.

2.4. Bioinformatics and Statistical Analysis

The workflows including DNA as the target nucleic acid were exploited in the modelling and
bio-statistical analysis described below, while RNA-based metagenomic datasets were only used to
evaluate the detection performances, since the lack of information on RNA copy numbers prevented
the possibility of computing quantitative comparisons. For the bio-statistical analysis, similar wet-lab
steps were categorized together (Table 2).

Filtering, trimming, and taxonomic classification of raw reads were performed using MG-RAST
(https://www.mg-rast.org) [27] and the RefSeq reference database [28]. The statistical analysis was
performed in R, v3.5.1, using the libraries phyloseq v1.26.1 [29] and DESeq2 v1.22.1 [30].

Before proceeding with the statistical analysis, the read counts were normalized using DESeq2 [30],
taking into account the compositional nature of the data. In brief, starting from the whole read counts
table, DESeq2 estimates the size factor of each sample, as the median of the ration of the observed
counts to those of a reference sample, obtained by taking the geometric mean across samples. Then,
the normalized counts are obtained by dividing the original counts by the estimated size factors.
Finally, DESeq2 computes the dispersion estimates of each gene using an Empirical Bayes approach.
Such estimates are then exploited in the negative binomial generalized linear models used in the
differential analysis [30,31].

The expected proportions of the microorganisms in the mock community and those detected in
the metagenomics datasets submitted as part of the PT, were compared using the following approach.
The expected relative abundances of the mock community were calculated, based on the cell counts
of each spiked microorganism (Table 1). Such concentrations were first multiplied by the genome
length to simulate the fact that in a sequencing experiment, longer genomes would be represented by a
higher number of reads. Then, relative abundances were obtained by normalizing the resulting values
to sum of one. The empirical relative abundances obtained in the 27 DNA metagenomic datasets
were computed, based on the number of reads that mapped on the mock community microorganisms.
Specifically, for each sample, the normalized abundances were first obtained with DESeq2 and the
relative abundances of the mock community microorganisms were computed by normalizing the sum
to one such abundances.

To visually compare the expected and the experimentally obtained compositions of the mock
community in the DNA metagenomic datasets, we plotted the relative abundances in the form of bar
plots. Differences in the mock community composition among samples and between each sample and
the expected composition, were also evaluated by computing the Bray-Curtis beta-diversity displayed

https://www.mg-rast.org/mgmain.html?mgpage=project&project=mgp86519
https://www.mg-rast.org/mgmain.html?mgpage=project&project=mgp86519
https://www.mg-rast.org
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using the heat map. Samples were then ranked based on their distance (i.e., Bray-Curtis beta-diversity)
from the expected composition of the mock community.

The statistical comparison of the species abundances obtained with different experimental
parameters was performed with DESeq2. Specifically, starting from the normalized read counts,
DESeq2 was used to compute the negative binomial generalized linear models for each taxon and,
hence, to test the impact of the variables of interest.

We evaluated a multiple regression model in which we considered all experimental parameters in
order to detect the effect of each variable, after adjustment for all others. To select the model variables,
we first estimated the relationship between the variables using Fisher’s exact test for categorical data
and the slope of a linear regression model for numerical variables. The only pair of variables for which
the p-value was <0.0001 was read length-sequencing platform (p-value = 4.47 × 10−5). In all other cases,
the p-value was ≥0.0001 and both variables were hence included in the model. All in all, the tested
variables were pre-processing protocol, DNA extraction kit, library preparation strategy, sequencing
depth, and sequencing platform. The advantage of using a multiple regression model that considers all
predictors (experimental variables) at the same time is that, when evaluating the effect of one predictor,
it adjusts for the effect of all others. The resulting estimates of this model, sometimes called ‘partial
effects’, hence, indicate the effect that each experimental variable has on the abundances of a certain
species, when all other variables are fixed. Statistical significance was assessed using the Likelihood
Ratio Test for multiple comparisons and the Wald’s test for pairwise comparisons. Moreover, the
impact of each workflow on the detected mock community microorganisms’ abundances was evaluated
by performing a pairwise two-samples t-test between the DESeq2 normalized read counts, obtained
with each pair of workflows. For bacteria, the parasite and the yeast, such a t-test was computed by
considering the mean value and the variance of the abundances detected in the workflows’ samples.
Since only one sample was tested by applying WF12, in this case, the sample mean of each species was
set to the value of its abundance in that sample and the sample variance was estimated as the average
of the variances observed for that species, in all other workflows. Finally, the sample size was set to the
average number of samples present in the other workflows. In this approximated test, we assume
that the variance of each microorganism’s abundance among the samples within a workflow is the
same for all workflows with only small deviations (i.e., variances of the microorganisms’ abundances
are comparable between different workflows), as shown in Figure S1. In all tests, the p-values were
adjusted for multiple testing using the Benjamini–Hochberg procedure [32] and a significance level of
0.05 was used to identify the statistically significant differences.

3. Results

3.1. Relative Abundance of the Reads Assigned to the Taxonomic Domains and the Microorganisms of the
Mock Community

The reads belonging to different taxonomic domains were quantified in the 27 metagenomics
datasets, submitted as part of the PT (Table 3).

The percentage of reads assigned to Eukaryota, including the two microorganisms belonging
to the mock community (i.e., C. parvum and S. cerevisiae) ranged between 2.957% (M34) and 80.567%
(M11). The reads assigned to the domain bacteria ranged between 18.823% (M11) and 95.202% (M36),
and those assigned to viruses ranged between 0.031% (M19) to 38.344% (M33) (Table 3). These results
showed that the reads assigned to each domain largely differed among the metagenomic datasets and
this affected the reads assigned to the microorganisms of the mock community. While it is difficult to
explain each of these differences, in the three datasets in which the percentage of reads assigned to the
viruses was ≤0.1 (i.e., M19, M20, and M28), RNA was extracted using the RNeasy mini kit.
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Table 3. Number of reads in each metagenomic dataset obtained from spiked salmon. For each
dataset, the percentage of reads assigned to Eukaryota, Bacteria, Viruses, Archaea, the number of reads
belonging to the microorganisms of the mock community, and their percentage in relation to the total
number of reads are detailed.

Metagenomic Dataset
Label N. Reads % Eukaryota % Bacteria % Viruses % Archaea N. Reads Mock

Community (%)

M06 1,644,354 14.631 85.004 0.319 0.025 875,934 (53.27)
M07 847,827 20.857 78.846 0.249 0.036 369,389 (43.57)
M08 742,029 80.338 19.050 0.325 0.286 20,440 (2.76)
M10 1,071,120 25.539 74.097 0.326 0.028 388,946 (36.31)
M11 730,610 80.567 18.823 0.309 0.299 3763 (0.52)
M12 537,347 79.502 19.747 0.469 0.264 11,073 (2.06)
M13 993,696 72.565 26.222 0.488 0.725 10,600 (1.07)
M15 1,508,927 21.857 77.846 0.254 0.033 635,158 (42.09)
M16 1,206,052 24.369 75.370 0.216 0.036 496,223 (41.14)
M18 1,867,262 19.308 80.394 0.259 0.027 681,708 (35.61)
M19 16,187 31.951 67.770 0.031 0.043 826 (5.1)
M20 16,702 64.459 35.475 0.048 0.018 1225 (7.33)
M23 82,614 45.051 54.713 0.171 0.036 21,891 (26.50)
M24 3,304,160 31.519 68.311 0.117 0.046 1,373,626 (41.57)
M25 1,173,758 45.668 54.015 0.222 0.073 353,797 (30.14)
M26 4,803,071 40.370 59.363 0.230 0.028 1,332,603 (27.75)
M27 911,713 46.621 53.249 0.104 0.021 205,421 (22.53)
M28 2340 72.393 27.564 0.043 0 203 (8.68)
M29 1,507,815 35.777 64.055 0.115 0.045 430,397 (28.54)
M30 3,680,106 14.271 85.576 0.122 0.022 2,217,739 (60.26)
M31 3,360,140 17.916 81.949 0.104 0.021 1,883,366 (56.05)
M32 4,884,497 11.043 88.809 0.119 0.020 2,769,020 (56.69)
M33 203,116 15.636 45.945 38.344 0.072 2156 (1.06)
M34 267,871 2.957 93.85 3.017 0.084 2231 (0.83)
M37 1,735,966 48.139 51.513 0.265 0.076 511,159 (29.45)
M36 17,120,850 4.586 95.202 0.148 0.057 9,405,164 (54.93)
M38 5,803,430 21.492 78.322 0.135 0.044 2,329,995 (40.15)

The quantification of the mock community microorganisms, in terms of relative abundance,
differed among the DNA metagenomic datasets (Table S1). As detailed in Materials and Methods,
the expected relative abundance of each microorganism was calculated, based on the number of cells
and virus genome copies experimentally spiked in the salmon, and the microorganisms’ genome size.
The relative abundances obtained from the 18 metagenomic datasets were compared to each other and
to the expected one (Figure 1), and the pairwise Bray–Curtis dissimilarity among samples and with the
expected composition was computed (Figure 2).

Figure 1. Relative abundance of the microorganisms of the mock community quantified in the DNA
metagenomic datasets obtained from spiked salmon. The first bar in the figure refers to the expected
relative abundance for the microorganisms experimentally spiked in the salmon.
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Figure 2. Heat map of Bray–Curtis dissimilarity and average linkage clustering dendrogram showing
the similarity between the benchmark (expected) and the DNA metagenomic datasets obtained from
spiked salmon, considering the microorganisms of the mock community. In the heat map, when a cell is
colored in red, it indicates that the two associated samples (in the corresponding row and column) have
an identical composition, while a white cell refers to two samples with the most different composition.

Table S2 shows the reads enumerated for each microorganism of the mock community using
MG-RAST. The read number threshold to consider a microorganism as detected or undetected in
a metagenomic dataset is currently unknown. Nevertheless, Table S3 summarizes the percentage
of metagenomic datasets obtained from DNA and RNA in which each microorganism of the mock
community was detected by assessing the enumeration in MG-RAST of at least 1, 5, or 10 corresponding
reads, as the detection threshold. All spiked bacteria, the yeast, and the parasite, were always detected
in the metagenomic datasets from DNA, while the percentage of metagenomic datasets in which
C. parvum was detected decreased from 100 to 67% in the metagenomic dataset from RNA, increasing
the detection threshold from one to 10 reads. The same result applied to F. nucleatum and P. freudenreichii
detected in 100% of the metagenomic datasets from RNA, by considering one read as the detection
threshold, while in 78% 10 reads were considered as the detection threshold (Table S3). In relation to
viruses, the DNA virus was detected in 83% of the metagenomic datasets from DNA but also in 56 to
33% of those from RNA. On the contrary, the RNA viruses were hardly detected in RNA metagenomic
datasets, when even 1 read was considered as the detection threshold, and it did not show up at all in
the DNA metagenomic datasets (Table S3).

3.2. Ranking of the Metagenomic Datasets Based on Their Dissimilarity to the Expected Composition and
Assessment of the Impact of Each Variable of the Workflow on the Abundance of the Mock Community Members

Considering the relative abundances of all microorganisms of the mock community, the DNA
metagenomic datasets were ranked according to their Bray–Curtis distance from the expected values.
The metagenomic dataset ranking closest to the expected value was M36 (Bray–Curtis distance 0.199)
followed by M38 (Table 4), and this ranking did not change when considering the bacteria only (i.e.,
M36 Bray–Curtis distance 0.152) (Table S4).
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Table 4. Ranking of the DNA metagenomic datasets obtained testing spiked salmon in relation to their
similarity to the expected composition of the mock community. The distance from the expected mock
community composition is measured as Bray–Curtis dissimilarity.

Metagenomic Dataset Distance from the Mock Community Rank

M36 0.207 1
M38 0.337 2
M24 0.345 3
M30 0.361 4
M32 0.370 5
M31 0.395 6
M07 0.435 7
M16 0.447 8
M27 0.464 9
M26 0.488 10
M18 0.495 11
M10 0.496 12
M15 0.498 13
M29 0.544 14
M08 0.556 15
M06 0.610 16
M11 0.646 17
M13 0.790 18

Among the variables investigated in the workflows, those impacting on the abundance of one
or more microorganisms spiked in the salmon were the pre-processing protocol, the DNA extraction
protocol, the library preparation strategy, and the sequencing platform.

The pre-processing protocol significantly affected the detected abundances of C. parvum, E. coli,
F. nucleatum, P. freudenreichii, S. enterica, and S. aureus (Table S5, Figure S2A). The normalized mean
abundances of the parasite and F. nucleatum were significantly higher in the metagenomic datasets
obtained without pre-processing, in comparison to where BBTL was applied, while the application
of a bead beating protocol provided the best results in terms of E. coli, P. freudenreichii, S. enterica,
and S. aureus abundances detected (Table S5, Figure S2A). Moreover, for F. nucleatum, the application of
any pre-processing protocol worked better than all the other tested pre-processing protocols (Table S5,
Figure S2A).

The abundances of C. parvum, B. fragilis, E. coli, P. freudenreichii, S. enterica, and S. aureus were
significantly higher in the metagenomic datasets where the DNA was extracted by PowerFood,
in comparison to the QIAamp DNA Mini Kit, with or without SISPA or the QIAamp UCP Pathogen
Mini Kit, while for F. nucleatum, the latter performed better (Table S6, Figure S2B). On the other hand,
for both F. nucleatum and S. aureus, the QIAamp DNA Mini Kit, with or without SISPA or the QIAamp
UCP Pathogen Mini Kit, performed better than QIAamp Fast DNA Stool Mini Kit and the DNeasy
PowerSoil Microbial Kit, while for B. fragilis, E. coli, P. freudenreichii, and S. enterica, it was the opposite
(Table S6, Figure S2B).

The abundances of E. coli, F. nucleatum, P. freudenreichii, S. enterica, and S. aureus were significantly
affected by the library preparation protocol. Nextera™ XT DNA Library Prep kit and Nextera™ DNA
Flex Library Preparation kit worked better for E. coli, while TruSeq® DNA Library Prep Kit, NEBNext®

Ultra™ II DNA Library Prep Kit for Illumina® and the GeneRead DNA Library kit, resulted in better
detected abundances for F. nucleatum, P. freudenreichii, S. enterica, and S. aureus (Table S7, Figure S2C).

The yeast abundance was not affected by the sequencing platform, while the abundances of all
other microorganisms was significantly higher in the metagenomic datasets obtained by sequencing
on a NextSeq500 or a HiSeq 2500, in comparison to other sequencing platforms (i.e., MiSeq, MiniSeq,
Ion S5XL System) (Table S8, Figure S2D).
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3.3. Assessment of the Impact of Each Workflow on the Abundance of the Mock Community Members

The results for each workflow (WF), starting with DNA as a target nucleic acid were compared by
performing a pairwise approximated t-test, in which we tested if the mock community microorganism’s
abundances detected by each pair of workflows differed.

The average abundance of the parasite was significantly higher for the samples processed using
the WFs 2 and 6, in comparison to WF11 (Tables S9 and S10, Figure S3). In the WF2, the salmon is
transferred to a Power Bead Tube inserted into the preheated (55 ◦C) adapter of TissueLyser II and
bead-beating was applied, before centrifugation at full speed for 1 min. Subsequently, the supernatant
was transferred to a new 2 mL tube before DNA extraction, using the MoBio PowerFood Microbial
DNA Isolation kit. In the WF6, the salmon was centrifuged at 5000 rpm for 20 min at 4 ◦C, and then
processed as in WF2. The main differences between WF11 in comparison to WFs 2 and 6 was that
sequencing was performed on the longer reads (i.e., 300 vs. 150 bp) and, on average, at a lower depth
(2 vs. >7 Gbp). Moreover, as detailed in the supplementary material, the sample handling protocol
in WF11 was very long and might have negatively impacted the DNA recovery. The significantly
low performances of WF11, in comparison to all other WFs, was also quantified for F. nucleatum.
The average abundance of the yeast was significantly higher for the samples processed using WF4,
including a bead beating protocol with TissueLyser than for WF6, while for B. fragilis it was the opposite
(Tables S9 and S10, Figure S3).

4. Discussion

Shotgun metagenomics is a culture-independent methodology with potential to contribute to
food-borne outbreaks detection and risk assessment of food-borne pathogens [33]. It consists of a
wet-lab part and a dry-lab part. The wet-lab part includes the sample collection for the generation of the
raw sequencing dataset. The dry-lab part includes the bioinformatic analysis, resulting in taxonomic
and functional gene assignments, using reference or de novo strategies, and the biostatistics analysis,
translating the bioinformatic results in biologically meaningful observations. Many publications
are available on different bioinformatic strategies to trim, assemble, and assign reads and contigs,
to known or unknown taxonomic and functional entities [34]. However, there are few fully accessible
and transparent bioinformatic workflows and many of the online available bioinformatic tools for
non-experts are not constantly updated in the reference databases. Biostatistics strategies are complex
and thus they must be selected with great care, when modelling and analyzing the metagenomic
datasets. Therefore, the pipelines fitting specific scenarios and case studies should be implemented
and shared at an international level, to improve harmonization in metagenomic dataset analysis
and interpretation.

This PT was organized with the aim to compare the suitability of different metagenomic wet-lab
protocols, for both detecting and quantifying the relative abundance of microorganisms belonging to
the different domains that were experimentally spiked in cold smoked salmon. Although a drawback
of this study was that the large number of variables included in the wet-lab workflows applied by
the participants resulted in the need to categorize similar but not identical wet-lab steps, nonetheless,
this PT was the first exercise on a real food matrix, while other studies addressed artificial datasets.
Moreover, to make the results of this PT as comprehensive as possible, the pipeline used for the
bioinformatic analysis (i.e., MG-RAST) is a freely available and user-friendly web resource, while more
powerful bioinformatic tools could have been used. The outputs of this PT should contribute to
speed up the application of shotgun metagenomic in food microbiome studies and in food safety
risk assessment, but for both, a quality assurance approach consistent with regulatory standards is
mandatory. At present, individual research institutes set the internal reference standards, but the lack of
universal reference organisms and genomic material makes it difficult to compare assay performances
between different laboratories [35]. Hence, it is unlikely that shotgun metagenomic sequencing will
replace the culture methods for foodborne pathogen investigation in the near future, although its great
potential was demonstrated [5,36,37].
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The main methodological constraints to be overcome are the lack of harmonized and validated
methods, the low sensitivity in detecting certain taxa in the sample, or the fact that the results obtained
strongly depend on the choice of wet-lab workflow and the bioinformatics pipelines, as shown by
our results. The scientific community must agree on the basic requirements to consider a dataset
meaningful for both bioinformatic and biostatistics analysis. If such requirements would be clearly
defined, then different workflows could be applied for the wet-lab part, as far as those requirements are
achieved, exploring further protocols to reduce shotgun metagenomic sequencing costs and improving
efficiency [38].

In this PT, the RNA viruses were hardly detected or not detected at all in the metagenomic
datasets. There are different possible reasons for the observed failure to detect viruses. This is likely
caused by the low relative spiking input of the viruses, in comparison to the final overall nucleic acid
content, which was intended to resemble a situation of exogenous viral contamination. However,
a pilot sequencing of a salmon aliquot after sample preparation with one-sixth (10 µL) of the virus
mix, resulted in a very low recovery for the viruses. Therefore, before the samples were sent out to the
participants, another 50 µL (five-sixth of the final amount of virus mix) was added to the frozen sample.
Moreover, it should be mentioned that the necessary heat-inactivation of the virus mix could cause
the virus particles to be destroyed, leading to a release of unprotected viral nucleic acids. Ultimately,
this could have caused a loss of viral nucleic acids, before sample processing by the participants, due to
exposure to the nucleases present in the salmon matrix. To solve the issue of low virus concentration,
which is common to food and human samples, it was suggested that an RNA extraction be carried
out and then to combine targeted with untargeted sequencing, spiking the variably sized panels
(100–10,000) of short primers into the reaction mixtures, at the reverse transcription step [39]. Following
this approach, Thézé, J. et al., 2018 increased the number of Zika virus reads by more than tenfold,
without substantially decreasing sensitivity for other pathogens in the metagenome. An enrichment
during the library preparation, also allowed virus identification in foods like oysters [40].

Considering the relative abundances of all microorganisms of the mock community, the DNA
metagenomic datasets were ranked according to their Bray–Curtis distance from the expected values.
Although it was shown that MG-RAST has good sensitivity and precision when assigning reads to
the species of a mock community [41], we acknowledge that MG-RAST suggests against the usage
of the species taxonomic level, and that the bioinformatic processing of data might have affected
the quantification of the species of the mock community, especially in the presence of possible
contamination microorganisms that are close relatives of the mock community species. The DNA
metagenomic ranking at the highest position (i.e., Bray–Cutis distance <0.20) were M36, followed by
M38 characterized by 95 and 78% of the total reads assigned to the domain bacteria (Table 3), which were
the main representatives of the mock community. In M36, the DNA was obtained using the QIAamp
DNA Mini Kit (Qiagen) supplemented with proteinase K, the TruSeq Nano DNA Library Preparation
protocol, and sequenced on an Illumina HiSeq2500 sequencer in rapid mode, at a read-length of 250 bp
paired-end to a coverage of 8.88 Gbp. With regards to the library preparation strategies, Grützke et al.,
2019 [42] showed that genomes from bacterial species within a mock community were better detected
using the TruSeq Nano, the Nextera Flex, and the TruPLEX kits over the Nextera XT kit. This result
was explained with a shift in the GC density of fragments, generated with the Nextera XT kit to
higher GC-contents, while this was balanced for the other three library kits, and reflected the expected
distribution from the collection of mock-community reference genomes [41]. This specific issue was
not investigated in this PT, although we also discovered a significant positive impact of the TruSeq
Nano DNA Library Prep kit, on the quantification of S. aureus (Figure S3), which feature a genome
with a low GC-content.

Among the variables investigated in the workflows, those impacting on the abundance of one
or more microorganisms spiked in the salmon were the pre-processing protocol, the DNA extraction
protocol, the library preparation strategy, and the sequencing platform. These results were certainly
affected by the multi regressing modelling approach, quantifying the effect of each experimental
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variable (e.g., pre-processing) on the abundances of a certain species, when all other variables were
fixed, which did not reflect what happened in real life, where each step of the wet-lab protocol
impacts on the following. However, since each participant applied in house wet-lab protocols without
restriction, the resulting variables in the metagenomic datasets were many, and the multi regressing
modeling approach allowed us to collect meaningful results, species by species. This limitation might
explain why sequencing coverage did not turn out to be a key variable affecting the relative abundance
of the spiked organisms, although the six metagenomic datasets closest to the expected composition of
the mock community were all sequenced at ≥8 Gbp. Clear indications on the sequencing coverage
threshold to be achieved in metagenomic investigations are lacking. However, Ni et al., 2013 [43]
stated that to detect bacteria species with a relative abundance of more than 1%, a 20× coverage should
be obtained, corresponding to a sequencing depth of 7.15 Gbp.

The investments in research on shotgun metagenomics are justified by the fact that the results
achieved in both human and food sectors translate in the identification of potential pathogens in the
ecosystems where those pathogens are in real life, and as a matter of fact, the interaction between
pathogens and their ecosystems affects both pathogen survival and multiplication ability [2,44].
If sample preparation is designed to be as non-specific as possible to capture all nucleic acids regardless
of their source, shotgun metagenomics is applicable simultaneously for viruses, bacteria, and parasites,
as was found in this study for several workflows and according to previous reports [7]. In this
framework, it is important to highlight that in the annual EFSA-ECDC report on foodborne and
waterborne outbreaks occurring in the EU, there is always a high percentage of outbreaks for which the
causative agent is described as ‘unknown’ or ‘unspecified’. In the last available report, referring to the
outbreaks which have occurred in 2018 in 28 Member States (MS) and 8 non-MS, such a percentage was
as high as 23.8% [1] and some of these unknown were likely to be uncultivable or difficult to culture
microorganisms, which could possibly be detected using shotgun sequencing. However, for diagnostic
metagenomics to become truly useful, the method must provide robust and reproducible outputs [31].

In conclusion, our results showed that there are huge differences in the workflows applied
in the wet-lab part of shotgun metagenomic sequencing at the international level, while there is a
need for harmonized and validated protocols. Despite the differences between wet-lab protocols,
all microorganisms of the mock community, belonging to the different domains (i.e., bacteria, parasite,
yeast, DNA, and RNA viruses) were successfully detected in the metagenomic datasets obtained
from spiked samples, suggesting that different wet-lab protocols could be successfully applied to
reach the same result. Nonetheless, since the percentages of metagenomic datasets in which the mock
community members were detected changed according to the number of reads selected as the detection
cut-off level, this parameter should be clearly defined to use shotgun metagenomic sequencing in
food microbiome studies, and in food safety risk assessment. There are many valuable papers on the
application of shotgun metagenomics, but the lack of transparent information on the technical details
of both the wet-lab and bioinformatic procedures are delaying the full implementation of this powerful
sequencing approach.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/12/1861/s1.
Figure S1: Within-DNA workflow log-variance of the detected abundances. Figure S2: Box plots of the DESeq2
normalized read counts (detected abundances) obtained in group of samples defined by: (a) the categorized
pre-processing procedure (i.e., categorized as protocols based on a beating protocol with TissueLyser (BBTL),
no-processing (NO_PP), and other pre-processing protocols (OTHER_PP); (b) the DNA extraction protocol
(i.e., DNeasy Power Food Microbial Kit (PowerFood), QIAamp DNA Mini Kit with or without SISPA and QIAamp
UCP Pathogen Mini Kit, categorized as QIAamp, or the QIAamp Fast DNA Stool and DNeasy Power Soil,
categorized as OTHER-EXD; (c) the library preparation strategy (i.e., Nextera™ XT DNA Library Prep kit and
the Nextera™ DNA Flex Library Preparation kit, categorized as NexteraXT, and the NEBNext® Ultra™ II DNA
Library Prep Kit for Illumina®, TruSeq® DNA Library Prep Kit, GeneRead DNA Library kit other strategies,
categorized as OTHER_L); (d) the sequencing platform (i.e., NextSeq500 and the HiSeq2500, categorized as
NextSeq500, and the MiniSeq, MiSeq and Ion Torrent S5XL, categorized as OTHER_SP). Figure S3: Box plots of
the mock community microorganisms’ abundances (DESeq2 normalized counts) detected in the DNA workflows.
Table S1: Relative abundance of the microorganisms of the mock community: Expected values and relative
abundance quantified in the DNA metagenomic datasets. Table S2: Read counts of the microorganisms of the
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mock community in the tested metagenomes. The target nucleic acid is specified under the metagenomic dataset
label. Table S3: Percentage of metagenomic datasets obtained from DNA and RNA in which each microorganism
of the mock community was detected. Table S4: Ranking of the DNA metagenomic datasets in relation to their
similarity to the expected composition of the mock community, considering bacteria only. Table S5: Comparison
of the mock community microorganisms’ abundances detected in the DNA metagenomic datasets when applying
different pre-processing protocols, categorized as protocols based on a beating protocol with TissueLyser (BBTL),
no-processing (NO_PP), and other pre-processing protocols (OTHER_PP). Table S6: Comparison of the mock
community microorganisms’ abundances detected in the DNA metagenomic datasets when DNA was extracted
by the DNeasy Power Food Microbial Kit (PowerFood), QIAamp DNA Mini Kit with or without SISPA and
QIAamp UCP Pathogen Mini Kit, categorized as QIAamp, or the QIAamp Fast DNA Stool and DNeasy Power Soil,
categorized as OTHER-EXD. Table S7: Comparison of the mock community microorganisms’ abundances detected
in the DNA metagenomic datasets when using the Nextera™ XT DNA Library Prep kit and the Nextera™ DNA
Flex Library Preparation kit, categorized as NexteraXT, or the NEBNext® Ultra™ II DNA Library Prep Kit for
Illumina®, TruSeq® DNA Library Prep Kit, GeneRead DNA Library kit other strategies, categorized as OTHER_L.
Table S8: Comparison of the mock community microorganisms’ abundances detected in the DNA metagenomic
datasets, when using the NextSeq500 and the HiSeq2500, categorized as NextSeq500, and the MiniSeq, MiSeq
and Ion Torrent S5XL, categorized as OTHER_SP. Table S9: Average abundance of each microorganism of the
mock community detected in the spiked samples, by the workflows (WF), including DNA as target nucleic acid.
Table S10: t-test adjusted p-values relative to the pairwise comparisons of the workflows (WF), including DNA as
target nucleic acid.
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