8 research outputs found

    Signatures of Z3_3 Vestigial Potts-nematic order in van der Waals antiferromagnets

    Full text link
    Layered van der Waals magnets have attracted much recent attention as a promising and versatile platform for exploring intrinsic two-dimensional magnetism. Within this broader class, the transition metal phosphorous trichalcogenides MMPX3X_3 stand out as particularly interesting, as they provide a realization of honeycomb lattice magnetism and are known to display a variety of magnetic ordering phenomena as well as superconductivity under pressure. One example, found in a number of different materials, is commensurate single-QQ zigzag antiferromagnetic order, which spontaneously breaks the spatial threefold (C3)(C_3) rotation symmetry of the honeycomb lattice. The breaking of multiple distinct symmetries in the magnetic phase suggests the possibility of a sequence of distinct transitions as a function of temperature, and a resulting intermediate Z3\mathbb{Z}_3-nematic phase which exists as a paramagnetic vestige of zigzag magnetic order -- a scenario known as vestigial ordering. Here, we report the observation of key signatures of vestigial Potts-nematic order in rhombohedral FePSe3_3. By performing linear dichroism imaging measurements -- an ideal probe of rotational symmetry breaking -- we find that the C3C_3 symmetry is already broken above the N\'eel temperature. We show that these observations are explained by a general Ginzburg-Landau model of vestigial nematic order driven by magnetic fluctuations and coupled to residual strain. An analysis of the domain structure as temperature is lowered and a comparison with zigzag-ordered monoclinic FePS3_3 reveals a broader applicability of the Ginzburg-Landau model in the presence of external strain, and firmly establishes the MMPX3X_3 magnets as a new experimental venue for studying the interplay between Potts-nematicity, magnetism and superconductivity.Comment: 6 pages, 4 figures + supplementary materia

    Charge-transfer Contact to a High-Mobility Monolayer Semiconductor

    Full text link
    Two-dimensional (2D) semiconductors, such as the transition metal dichalcogenides, have demonstrated tremendous promise for the development of highly tunable quantum devices. Realizing this potential requires low-resistance electrical contacts that perform well at low temperatures and low densities where quantum properties are relevant. Here we present a new device architecture for 2D semiconductors that utilizes a charge-transfer layer to achieve large hole doping in the contact region, and implement this technique to measure magneto-transport properties of high-purity monolayer WSe2_2. We measure a record-high hole mobility of 80,000 cm2^2/Vs and access channel carrier densities as low as 1.6×10111.6\times10^{11} cm−2^{-2}, an order of magnitude lower than previously achievable. Our ability to realize transparent contact to high-mobility devices at low density enables transport measurement of correlation-driven quantum phases including observation of a low temperature metal-insulator transition in a density and temperature regime where Wigner crystal formation is expected, and observation of the fractional quantum Hall effect under large magnetic fields. The charge transfer contact scheme paves the way for discovery and manipulation of new quantum phenomena in 2D semiconductors and their heterostructures

    Direct visualization of the charge transfer in Graphene/α\alpha-RuCl3_3 heterostructure

    Get PDF
    We investigate the electronic properties of a graphene and α\alpha-ruthenium trichloride (hereafter RuCl3_3) heterostructure, using a combination of experimental and theoretical techniques. RuCl3_3 is a Mott insulator and a Kitaev material, and its combination with graphene has gained increasing attention due to its potential applicability in novel electronic and optoelectronic devices. By using a combination of spatially resolved photoemission spectroscopy, low energy electron microscopy, and density functional theory (DFT) calculations we are able to provide a first direct visualization of the massive charge transfer from graphene to RuCl3_3, which can modify the electronic properties of both materials, leading to novel electronic phenomena at their interface. The electronic band structure is compared to DFT calculations that confirm the occurrence of a Mott transition for RuCl3_3. Finally, a measurement of spatially resolved work function allows for a direct estimate of the interface dipole between graphene and RuCl3_3. The strong coupling between graphene and RuCl3_3 could lead to new ways of manipulating electronic properties of two-dimensional lateral heterojunction. Understanding the electronic properties of this structure is pivotal for designing next generation low-power opto-electronics devices

    Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl3 Heterostructures

    Get PDF
    [EN] The ability to create nanometer-scale lateral p-n junctions is essential for the next generation of two-dimensional (2D) devices. Using the charge-transfer heterostructure graphene/alpha-RuCl3, we realize nanoscale lateral p-n junctions in the vicinity of graphene nanobubbles. Our multipronged experimental approach incorporates scanning tunneling microscopy (STM) and spectroscopy (STS) and scattering-type scanning near-field optical microscopy (s-SNOM) to simultaneously probe the electronic and optical responses of nanobubble p-n junctions. Our STM/STS results reveal that p-n junctions with a band offset of 0.6 eV can be achieved with widths of 3 nm, giving rise to electric fields of order 108 V/m. Concurrent s-SNOM measurements validate a point-scatterer formalism for modeling the interaction of surface plasmon polaritons (SPPs) with nanobubbles. Ab initio density functional theory (DFT) calculations corroborate our experimental data and reveal the dependence of charge transfer on layer separation. Our study provides experimental and conceptual foundations for generating p-n nanojunctions in 2D materials.Research at Columbia University was supported as part of the Energy Frontier Research Center on Programmable Quantum Materials funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award No DE-SC0019443. Plasmonic nano-imaging at Columbia University was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award No DE-SC0018426. J.Z. and A.R. were supported by the European Research Council (ERC-2015-AdG694097), the Cluster of Excellence “Advanced Imaging of Matter” (AIM) EXC 2056-390715994, funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under RTG 2247, Grupos Consolidados (IT1249-19), and SFB925 “Light induced dynamics and control of correlated quantum systems”. J.Z. and A.R. would like to acknowledge Nicolas Tancogne-Dejean and Lede Xian for fruitful discussions and also acknowledge support by the Max Planck Institute-New York City Center for Non-Equilibrium Quantum Phenomena. The Flatiron Institute is a division of the Simons Foundation. J.Z. acknowledges funding received from the European Union Horizon 2020 research and innovation programme under Marie SkƂodowska-Curie Grant Agreement 886291 (PeSD-NeSL). STM support was provided by the National Science Foundation via Grant DMR-2004691. C.R.-V. acknowledges funding from the European Union Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie Grant Agreement 844271. D.G.M. acknowledges support from the Gordon and Betty Moore Foundation’s EPiQS Initiative, Grant GBMF9069. J.Q.Y. was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. S.E.N. acknowledges support from the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Scientific User Facilities. Work at University of Tennessee was supported by NSF Grant 180896

    Nanometer-scale lateral p-n junctions in graphene/α-RuCl3 heterostructures

    Get PDF
    The ability to create nanometer-scale lateral p–n junctions is essential for the next generation of two-dimensional (2D) devices. Using the charge-transfer heterostructure graphene/α-RuCl3, we realize nanoscale lateral p–n junctions in the vicinity of graphene nanobubbles. Our multipronged experimental approach incorporates scanning tunneling microscopy (STM) and spectroscopy (STS) and scattering-type scanning near-field optical microscopy (s-SNOM) to simultaneously probe the electronic and optical responses of nanobubble p–n junctions. Our STM/STS results reveal that p–n junctions with a band offset of ∌0.6 eV can be achieved with widths of ∌3 nm, giving rise to electric fields of order 108 V/m. Concurrent s-SNOM measurements validate a point-scatterer formalism for modeling the interaction of surface plasmon polaritons (SPPs) with nanobubbles. Ab initio density functional theory (DFT) calculations corroborate our experimental data and reveal the dependence of charge transfer on layer separation. Our study provides experimental and conceptual foundations for generating p–n nanojunctions in 2D materials.Research at Columbia University was supported as part of the Energy Frontier Research Center on Programmable Quantum Materials funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award No DE-SC0019443. Plasmonic nano-imaging at Columbia University was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award No DE-SC0018426. J.Z. and A.R. were supported by the European Research Council (ERC-2015-AdG694097), the Cluster of Excellence “Advanced Imaging of Matter” (AIM) EXC 2056-390715994, funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under RTG 2247, Grupos Consolidados (IT1249-19), and SFB925 “Light induced dynamics and control of correlated quantum systems”. J.Z. and A.R. would like to acknowledge Nicolas Tancogne-Dejean and Lede Xian for fruitful discussions and also acknowledge support by the Max Planck Institute-New York City Center for Non-Equilibrium Quantum Phenomena. The Flatiron Institute is a division of the Simons Foundation. J.Z. acknowledges funding received from the European Union Horizon 2020 research and innovation programme under Marie SkƂodowska-Curie Grant Agreement 886291 (PeSD-NeSL). STM support was provided by the National Science Foundation via Grant DMR-2004691. C.R.-V. acknowledges funding from the European Union Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie Grant Agreement 844271. D.G.M. acknowledges support from the Gordon and Betty Moore Foundation’s EPiQS Initiative, Grant GBMF9069. J.Q.Y. was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. S.E.N. acknowledges support from the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Scientific User Facilities. Work at University of Tennessee was supported by NSF Grant 180896.Peer reviewe

    Ultra-sharp lateral p-n junctions in modulation-doped graphene

    No full text
    We demonstrate ultra-sharp (â‰Č10 nm) lateral p-n junctions in graphene using electronic transport, scanning tunneling microscopy, and first principles calculations. The p-n junction lies at the boundary between differentially-doped regions of a graphene sheet, where one side is intrinsic and the other is charge-doped by proximity to a flake of α-RuCl3 across a thin insulating barrier. We extract the p-n junction contribution to the device resistance to place bounds on the junction width. We achieve an ultra-sharp junction when the boundary between the intrinsic and doped regions is defined by a cleaved crystalline edge of α-RuCl3 located 2 nm from the graphene. Scanning tunneling spectroscopy in heterostructures of graphene, hexagonal boron nitride, and α-RuCl3 shows potential variations on a sub-10 nm length scale. First principles calculations reveal the charge-doping of graphene decays sharply over just nanometers from the edge of the α-RuCl3 flake
    corecore