47 research outputs found

    Rasch analysis of the Multiple Sclerosis Impact Scale (MSIS-29)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple Sclerosis (MS) is a degenerative neurological disease that causes impairments, including spasticity, pain, fatigue, and bladder dysfunction, which negatively impact on quality of life. The Multiple Sclerosis Impact Scale (MSIS-29) is a disease-specific health-related quality of life (HRQoL) instrument, developed using the patient's perspective on disease impact. It consists of two subscales assessing the physical (MSIS-29-PHYS) and psychological (MSIS-29-PSYCH) impact of MS. Although previous studies have found support for the psychometric properties of the MSIS-29 using traditional methods of scale evaluation, the scale has not been subjected to a detailed Rasch analysis. Therefore, the objective of this study was to use Rasch analysis to assess the internal validity of the scale, and its response format, item fit, targeting, internal consistency and dimensionality.</p> <p>Methods</p> <p>Ninety-two persons with definite MS residing in the community were recruited from a tertiary hospital database. Patients completed the MSIS-29 as part of a larger study. Rasch analysis was undertaken to assess the psychometric properties of the MSIS-29.</p> <p>Results</p> <p>Rasch analysis showed overall support for the psychometric properties of the two MSIS-29 subscales, however it was necessary to reduce the response format of the MSIS-29-PHYS to a 3-point response scale. Both subscales were unidimensional, had good internal consistency, and were free from item bias for sex and age. Dimensionality testing indicated it was not appropriate to combine the two subscales to form a total MSIS score.</p> <p>Conclusion</p> <p>In this first study to use Rasch analysis to fully assess the psychometric properties of the MSIS-29 support was found for the two subscales but not for the use of the total scale. Further use of Rasch analysis on the MSIS-29 in larger and broader samples is recommended to confirm these findings.</p

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Recharge mechanisms in an Arid Zone River: Effects of channelisation

    Get PDF
    Arid zone, ephemeral rivers typically experience very high transmission losses. Most international studies have identified infiltration into stream sediments and subsequent percolation to the unconfined alluvial aquifer as the major cause of transmission losses. There is relatively little data regarding mechanisms and stores controlling transmission loss processes in Australian arid zone streams, particularly in regards recharge to the unconfined aquifer. This study reports on a field study of recharge mechanisms occurring in the Neales River of the Lake Eyre Basin (northern South Australia). Piezometric monitoring, numerical and analytical modelling were used to identify and quantify recharge to the unconfined aquifer during streamflow events in 2004-2005. Significant recharge only occurred in channelised reaches and rates of recharge did not show a clear relationship with stage but tended to be higher for flow events occurring after longer periods of no flow. Reaches lacking a single, well-defined channel are common in the anastomosing rivers of the Lake Eyre Basin. Piezometers monitoring the alluvial sediments at two locations lacking well-defined channels did not measure any development of a saturated zone in the alluvial aquifer following flow events. The data suggests that most percolation and recharge occurs through the bank, rather than the floodplain and this needs to be taken into account when estimating transmission losses for these river systems

    Salt and water flux in an arid zone intermittent river: The role of the floodplain environment

    Get PDF
    Exchange between the surface water and local groundwater systems in intermittent rivers is not well understood, however the ecological functioning of these riverine environments can be dependent on the degree of interaction between the two domains. Spatial and temporal changes in the isotopic (δ18O/δ2H) and major ion composition of the floodplain aquifers in the lower reaches of the intermittent Diamantina River, South Australia, along with hydrologic data and sedimentary analysis, are used to identify localized groundwater recharge following flow events. The approximately synchronous response of groundwater levels to surface water events over two years (encompassing the recession of one major flood involving substantial floodplain inundation and two smaller events) particularly in near channel locations, indicates connectivity between surface water and local groundwater systems. The increase in δ18O/δ2H values and decrease in the salinity of groundwater <100m from the river subsequent to major flooding indicates event recharge of the shallow alluvial aquifers. Over time, groundwater compositions return to more saline and isotopically depleted values, considered here to be base conditions. Groundwater salinity and isotopic compositions of the mid and outer floodplains varied little over the course of the study period despite flood inundation and change in groundwater head. Sedimentary analysis of the predominantly silt and clay floodplain surface indicates the potential of these soils to develop seals and thus limit infiltration of flood waters. Thus event recharge was limited to near bank areas or zones of preferential infiltration over the course of the study period. CFC dating and isotopic data give some indication that sustained recharge to the floodplain groundwater system occurs during successive large flood events or wet years

    Riparian tree water use by eucalyptus coolabah in the Lake Eyre Basin

    No full text
    The Lake Eyre Basin (LEB) is characterised by enormous stream flow variability, low rainfall, saline groundwater and at times saline surface water; conditions that demand flexible tree water use strategies in the riparian zone. In the lower reaches of the Diamantina River, the water sources and extraction patterns of Eucalyptus coolabah were examined using isotope data from xylem, soil water, groundwater and surface water. Additionally, soil chloride and matric potential data were used to infer zones of water availability for root uptake. It was found that despite their elevated salinity, groundwater and soil water formed a large proportion of the transpiration flux, with little contribution from standing pools of surface water. At two sites located on the dry floodplain, the data indicated E. coolabah relied substantially on groundwater with a salinity exceeding 30,000 mgL-1Cl. However, some dilution with fresher soil water was evident at most sites, highlighting the importance of flooding in replenishing soil water. Water extraction primarily occurred in the unsaturated zone where a compromise between salinity and source reliability was required. However, E. coolabah was found to have higher salinity tolerances than previously reported for Eucalyptus species
    corecore