5,112 research outputs found
Electron shielding studies - Experimental program Technical summary report, 1 Aug. 1968 - 31 Dec. 1969
Electron shielding and bremsstrahlung energy spectra for tin, gold, and silve
Topological Defects in Twisted Bundles of Two-Dimensionally Ordered Filaments
Twisted assemblies of filaments in ropes, cables and bundles are essential
structural elements in wide use in macroscopic materials as well as within the
cells and tissues of living organisms. We develop the unique, non-linear
elastic properties of twisted filament bundles that derive from generic
properties of two-dimensional line-ordered materials. Continuum elasticity
reveals a formal equivalence between the elastic stresses induced by bundle
twist and those induced by the positive curvature in thin, elastic sheets.
These geometrically-induced stresses can be screened by 5-fold disclination
defects in lattice packing, and we predict a discrete spectrum elastic energy
groundstates associated with integer numbers of disclinations in cylindrical
bundles. Finally, we show that elastic-energy groundstates are extremely
sensitive to defect position in the cross-section, with off-center
disclinations driving the entire bundle to buckle, adopting globally writhing
configurations.Comment: 4.1 pages; 3 figure
Absolute photoionization cross section measurements of the Kr I-isoelectronic sequence
Photoionization spectra have been recorded in the 4s, 4p and 3d resonance regions for the Kr Iisoelectronic sequence using both the dual laser produced plasma technique (at DCU) to produce photoabsorption spectra, and the merged ion beam and synchrotron radiation technique (at ASTRID) to measure absolute photoionization cross sections. Profile parameters are compared for the 4s − np resonances of Rb+ and Sr2+. Many new 4p " ns, md transitions are identified with the aid of Hartree-Fock calculations, and consistent quantum defects are observed for the various ns and md Rydberg series. Absolute single and double photoionization cross sections recorded in the 3d region for Rb+ and Sr2+ ions show preferential decay via double photoionization. This is only the second report where both the DLP technique and the merged beam technique have been used simultaneously to record photoionization spectra, and the advantages of both techniques (i.e. better resolution in the case of DLP and values for absolute photoionization cross sections in the case of the merged beam technique) are highlighted
Neutron capture cross sections of tungsten and rhenium Annual summary report
Neutron capture cross sections for natural tungsten and rheniu
Applicability of Modified Effective-Range Theory to positron-atom and positron-molecule scattering
We analyze low-energy scattering of positrons on Ar atoms and N2 molecules
using Modified Effective-Range Theory (MERT) developped by O'Malley, Spruch and
Rosenberg [Journal of Math. Phys. 2, 491 (1961)]. We use formulation of MERT
based on exact solutions of Schroedinger equation with polarization potential
rather than low-energy expansions of phase shifts into momentum series. We show
that MERT describes well experimental data, provided that effective-range
expansion is performed both for s- and p-wave scattering, which dominate in the
considered regime of positron energies (0.4 - 2 eV). We estimate the values of
the s-wave scattering lenght and the effective range for e+ - Ar and e+ - N2
collisions.Comment: RevTeX, 4 pages, 2 figure
Circle talks as situated experiential learning: Context, identity, and knowledgeability in \u27learning from reflection\u27
This article presents research that used ethnographic and sociolinguistic methods to study ways participants learn through reflection when carried out as a “circle talk.” The data indicate that participants in the event (a) invoked different contextual frames that (b) implicated them in various identity positions, which (c) affected how they could express their knowledge. These features worked together to generate socially shared meanings that enabled participants to jointly achieve conceptualization—the ideational role “reflection” is presumed to play in the experiential learning process. The analysis supports the claim that participants generate new knowledge in reflection, but challenges individualistic and cognitive assumptions regarding how this occurs. The article builds on situated views of experiential learning by showing how knowledge can be understood as socially shared and how learning and identity formation are mutually entailing processes
Compton Scattering in Ultra-Strong Magnetic Fields: Numerical and Analytical Behavior in the Relativistic Regime
This paper explores the effects of strong magnetic fields on the Compton
scattering of relativistic electrons. Recent studies of upscattering and energy
loss by relativistic electrons that have used the non-relativistic, magnetic
Thomson cross section for resonant scattering or the Klein-Nishina cross
section for non-resonant scattering do not account for the relativistic quantum
effects of strong fields ( G). We have derived a
simplified expression for the exact QED scattering cross section for the
broadly-applicable case where relativistic electrons move along the magnetic
field. To facilitate applications to astrophysical models, we have also
developed compact approximate expressions for both the differential and total
polarization-dependent cross sections, with the latter representing well the
exact total QED cross section even at the high fields believed to be present in
environments near the stellar surfaces of Soft Gamma-Ray Repeaters and
Anomalous X-Ray Pulsars. We find that strong magnetic fields significantly
lower the Compton scattering cross section below and at the resonance, when the
incident photon energy exceeds in the electron rest frame. The cross
section is strongly dependent on the polarization of the final scattered
photon. Below the cyclotron fundamental, mostly photons of perpendicular
polarization are produced in scatterings, a situation that also arises above
this resonance for sub-critical fields. However, an interesting discovery is
that for super-critical fields, a preponderance of photons of parallel
polarization results from scatterings above the cyclotron fundamental. This
characteristic is both a relativistic and magnetic effect not present in the
Thomson or Klein-Nishina limits.Comment: AASTeX format, 31 pages included 7 embedded figures, accepted for
publication in The Astrophysical Journa
Dense Antihydrogen: Its Production and Storage to Envision Antimatter Propulsion
We discuss the possibility that dense antihydrogen could provide a path
towards a mechanism for a deep space propulsion system. We concentrate at
first, as an example, on Bose-Einstein Condensate (BEC) antihydrogen. In a
Bose-Einstein Condensate, matter (or antimatter) is in a coherent state
analogous to photons in a laser beam, and individual atoms lose their
independent identity. This allows many atoms to be stored in a small volume. In
the context of recent advances in producing and controlling BECs, as well as in
making antihydrogen, this could potentially provide a revolutionary path
towards the efficient storage of large quantities of antimatter, perhaps
eventually as a cluster or solid.Comment: 12 pages, 3 figure
Wellness and Multiple Sclerosis: The National MS Society Establishes a Wellness Research Working Group and Research Priorities
Background:
People with multiple sclerosis (MS) have identified “wellness” and associated behaviors as a high priority based on “social media listening” undertaken by the National MS Society (i.e. the Society). Objective:
The Society recently convened a group that consisted of researchers with experience in MS and wellness-related research, Society staff members, and an individual with MS for developing recommendations regarding a wellness research agenda. Method:
The members of the group engaged in focal reviews and discussions involving the state of science within three approaches for promoting wellness in MS, namely diet, exercise, and emotional wellness. Results:
That process informed a group-mediated activity for developing and prioritizing research goals for wellness in MS. This served as a background for articulating the mission and objectives of the Society’s Wellness Research Working Group. Conclusion:
The primary mission of the Wellness Research Working Group is the provision of scientific evidence supporting the application of lifestyle, behavioral, and psychosocial approaches for promoting optimal health of mind, body, and spirit (i.e. wellness) in people with MS as well as managing the disease and its consequences
- …
