351 research outputs found

    Mendelsohn v. Meese: the Impact of the Constitution on the Anti-Terrorism Act of 1987

    Get PDF

    Bandwidth efficient CCSDS coding standard proposals

    Get PDF
    The basic concatenated coding system for the space telemetry channel consists of a Reed-Solomon (RS) outer code, a symbol interleaver/deinterleaver, and a bandwidth efficient trellis inner code. A block diagram of this configuration is shown. The system may operate with or without the outer code and interleaver. In this recommendation, the outer code remains the (255,223) RS code over GF(2 exp 8) with an error correcting capability of t = 16 eight bit symbols. This code's excellent performance and the existence of fast, cost effective, decoders justify its continued use. The purpose of the interleaver/deinterleaver is to distribute burst errors out of the inner decoder over multiple codewords of the outer code. This utilizes the error correcting capability of the outer code more efficiently and reduces the probability of an RS decoder failure. Since the space telemetry channel is not considered bursty, the required interleaving depth is primarily a function of the inner decoding method. A diagram of an interleaver with depth 4 that is compatible with the (255,223) RS code is shown. Specific interleaver requirements are discussed after the inner code recommendations

    A simulation study of the performance of the NASA (2,1,6) convolutional code on RFI/burst channels

    Get PDF
    In an earlier report, the LINKABIT Corporation studied the performance of the (2,1,6) convolutional code on the radio frequency interference (RFI)/burst channel using analytical methods. Using an R(sub 0) analysis, the report concluded that channel interleaving was essential to achieving reliable performance. In this report, Monte Carlo simulation techniques are used to study the performance of the convolutional code on the RFI/burst channel in more depth. The basic system model under consideration is shown. The convolutional code is the NASA standard code with generators g(exp 1) = 1+D(exp 2)+D(exp 3)+D(exp 5)+D(exp 6) and g(exp 2) = 1+D+D(exp 2)+D(exp 3)+D(exp 6) and d(sub free) = 10. The channel interleaver is of the convolutional or periodic type. The binary output of the channel interleaver is transmitted across the channel using binary phase shift keying (BPSK) modulation. The transmitted symbols are corrupted by an RFI/burst channel consisting of a combination of additive white Gaussian noise (AWGN) and RFI pulses. At the receiver, a soft-decision Viterbi decoder with no quantization and variable truncation length is used to decode the deinterleaved sequence

    Search for optimal distance spectrum convolutional codes

    Get PDF
    In order to communicate reliably and to reduce the required transmitter power, NASA uses coded communication systems on most of their deep space satellites and probes (e.g. Pioneer, Voyager, Galileo, and the TDRSS network). These communication systems use binary convolutional codes. Better codes make the system more reliable and require less transmitter power. However, there are no good construction techniques for convolutional codes. Thus, to find good convolutional codes requires an exhaustive search over the ensemble of all possible codes. In this paper, an efficient convolutional code search algorithm was implemented on an IBM RS6000 Model 580. The combination of algorithm efficiency and computational power enabled us to find, for the first time, the optimal rate 1/2, memory 14, convolutional code

    Performance of Vegetative Filter Strips with Varying Pollutant Source and Filter Strip Lengths

    Get PDF
    Vegetative filter strips (VFS) can reduce runoff losses of pollutants such as nitrogen (N) and phosphorus (P) from land areas treated with fertilizers. While VFS effectiveness is considered to depend on lengths of pollutant source and VFS areas, there is little experimental evidence of this dependence, particularly when the pollutant source is manure-treated pasture. This study assessed the effects of pollutant source area (fescue pasture treated with poultry litter) length and VFS (fescue pasture) length on VFS removal of nitrate N (NO3-N), ammonia N (NH3-N), total Kjeldahl N (TKN), ortho-P (PO4-P), total P (TP), total organic carbon (TOC), total suspended solids (TSS), and fecal coliform (FC) from incoming runoff. This research examined poultry litter-treated lengths of 6.1, 12.2, and 18.3 m, with corresponding VFS lengths of up to 18.3 m, 12.2 m, and 6.1 m, respectively. Runoff was produced from simulated rainfall applied to both the litter-treated and VFS areas at 50 mm/h for 1 h of runoff. Pollutant concentrations in runoff were unaffected by litter-treated length but demonstrated a first-order exponential decline with increasing VFS length except for TSS and FC. Runoff mass transport of NH3-N,TKN, PO4-P, TP and TOC increased with increasing litter-treated length (due to increased runoff) and decreased (approximately first-order exponential decline) with increasing VFS length when affected by VFS length. Effectiveness of the VFS in terms of NH3-N, TKN, PO4-P, TP and TOC removal from runoff ranged from 12-75, 22-67, 22-82, 21-66, and 8-30% respectively. The data from this study can help in developing and testing models that simulate VFS performance and thus aid in the design of VFS installed downslope of pasture areas treated with animal manure

    Density Dependence, Whitebark Pine Decline and Vital Rates of Grizzly Bears in The Greater Yellowstone Ecosystem

    Get PDF
    Recent evidence suggests annual population growth of the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem has slowed from 4.1–7.6 percent during 1983–2001 to 0.3–2.2 percent during 2002–2011. Substantial changes in availability of an important fall food has occurred over the past decade. Whitebark pine (Pinus albicaulis), a highly variable but important fall food source for grizzly bears, has experienced substantial mortality due to a mountain pine beetle (Dendroctonus ponderosae) outbreak that started in the early 2000s. Concurrent with changes in food resources, the grizzly bear population has reached high densities in some areas and has continued to expand, now occupying >50,000 km2. We tested research hypotheses to examine if changes in vital rates detected during the past decade were more associated with grizzly bear density versus a whitebark pine decline. We focused our assessment on known-fate data to estimate survival of cubs-of-the-year, yearlings, and independent bears (? 2 yrs) and reproductive transition of females from having no offspring to having cubs.  We observed a change in survival of independent bears between the periods of 1983–2001 and 2002–2012, which was mostly a function of increased male survival; female survival did not change. Cub survival and reproductive transition declined during the last decade and were associated with an index of grizzly bear density, which indicated increasing density over time. We found no support that the decline in these vital rates was associated with the index of whitebark decline

    Bandwidth efficient coding: Theoretical limits and real achievements. Error control techniques for satellite and space communications

    Get PDF
    In his seminal 1948 paper 'The Mathematical Theory of Communication,' Claude E. Shannon derived the 'channel coding theorem' which has an explicit upper bound, called the channel capacity, on the rate at which 'information' could be transmitted reliably on a given communication channel. Shannon's result was an existence theorem and did not give specific codes to achieve the bound. Some skeptics have claimed that the dramatic performance improvements predicted by Shannon are not achievable in practice. The advances made in the area of coded modulation in the past decade have made communications engineers optimistic about the possibility of achieving or at least coming close to channel capacity. Here we consider the possibility in the light of current research results

    The Grizzly, September 24, 2015

    Get PDF
    CIE Professors Lend a Hand at Columbia U. • As Rush Week Ends, Greek Numbers Defy Expectations • Getting Back on Track • Healthy Addition: HEP Welcomes Rugby Coach to Faculty Lineup • Improving the Higher Education Experience • UC Student Trains Service Dog on Campus • Students Work with College Communications Office • Main Street Life: Upperclassmen Debate Housing\u27s Pros and Cons • Opinions: The Visit Rates 5 / 10; Extra-curricular Options for Students • Going Pro : Symposium on Sports Business and the Entrepreneurial Mindset Comes to Ursinus • Looking to Three-peathttps://digitalcommons.ursinus.edu/grizzlynews/1671/thumbnail.jp

    Circularly polarized luminescence from helically chiral N,N,O,O-boron-chelated dipyrromethenes

    Get PDF
    Helically chiral N,N,O,O-boron chelated dipyrromethenes showed solution-phase circularly polarized luminescence (CPL) in the red region of the visible spectrum (λem(max) from 621 to 663 nm). The parent dipyrromethene is desymmetrised through O chelation of boron by the 3,5-ortho-phenolic substituents, inducing a helical chirality in the fluorophore. The combination of high luminescence dissymmetry factors (|glum| up to 4.7 ×10−3) and fluorescence quantum yields (ΦF up to 0.73) gave exceptionally efficient circularly polarized red emission from these simple small organic fluorophores, enabling future application in CPL-based bioimaging
    • …
    corecore