4,271 research outputs found
Multi-jet Production in Hadron Collisions
The advent of high-energy hadron colliders necessitates efficient and
accurate computation of multi-jet production processes, both as QCD processes
in their own right and as backgrounds for other physics. The algorithm that
performs these tasks and a brief numerical study of multi-jet processes are
presented.Comment: 21 pages, 9 figure
Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces.
Although adhesive interactions between cells and nanostructured interfaces have been studied extensively, there is a paucity of data on how nanostructured interfaces repel cells by directing cell migration and cell-colony organization. Here, by using multiphoton ablation lithography to pattern surfaces with nanoscale craters of various aspect ratios and pitches, we show that the surfaces altered the cells focal-adhesion size and distribution, thus affecting cell morphology, migration and ultimately localization. We also show that nanocrater pitch can disrupt the formation of mature focal adhesions to favour the migration of cells towards higher-pitched regions, which present increased planar area for the formation of stable focal adhesions. Moreover, by designing surfaces with variable pitch but constant nanocrater dimensions, we were able to create circular and striped cellular patterns. Our surface-patterning approach, which does not involve chemical treatments and can be applied to various materials, represents a simple method to control cell behaviour on surfaces
Linear-Time Superbubble Identification Algorithm for Genome Assembly
DNA sequencing is the process of determining the exact order of the
nucleotide bases of an individual's genome in order to catalogue sequence
variation and understand its biological implications. Whole-genome sequencing
techniques produce masses of data in the form of short sequences known as
reads. Assembling these reads into a whole genome constitutes a major
algorithmic challenge. Most assembly algorithms utilize de Bruijn graphs
constructed from reads for this purpose. A critical step of these algorithms is
to detect typical motif structures in the graph caused by sequencing errors and
genome repeats, and filter them out; one such complex subgraph class is a
so-called superbubble. In this paper, we propose an O(n+m)-time algorithm to
detect all superbubbles in a directed acyclic graph with n nodes and m
(directed) edges, improving the best-known O(m log m)-time algorithm by Sung et
al
Implied volatility indices – A review
© 2020 Board of Trustees of the University of Illinois This study tests and documents the information content of all publicly available implied volatility indices regarding both the realized volatility and the returns of the underlying asset. These topics present a path traveled by earlier work, but there are gains in studying together all 47 volatility-based indices that are now available, in order to examine if different asset classes and financial instruments could possess different return-volatility relations and forecasting ability. Our findings suggest that implied volatility includes information about future volatility beyond that contained in past volatility; this finding is consistent across all assets under review. Furthermore, we find a significant contemporaneous relationship between implied volatility changes and underlying returns, but at the same time, we show that implied volatilities in commodities, bonds, currencies and volatility react differently to underlying price changes compared to equities. Hence, our findings have important implications for asset allocation, risk management and asset pricing
Efficient Computation of Sequence Mappability
Sequence mappability is an important task in genome re-sequencing. In the
-mappability problem, for a given sequence of length , our goal
is to compute a table whose th entry is the number of indices such
that length- substrings of starting at positions and have at
most mismatches. Previous works on this problem focused on heuristic
approaches to compute a rough approximation of the result or on the case of
. We present several efficient algorithms for the general case of the
problem. Our main result is an algorithm that works in time and space for
. It requires a carefu l adaptation of the technique of Cole
et al.~[STOC 2004] to avoid multiple counting of pairs of substrings. We also
show -time algorithms to compute all results for a fixed
and all or a fixed and all . Finally we show
that the -mappability problem cannot be solved in strongly subquadratic
time for unless the Strong Exponential Time Hypothesis
fails.Comment: Accepted to SPIRE 201
Development and application of rice starch based edible coating to improve the postharvest storage potential and quality of plum fruit (<i>Prunus salicina</i>)
The study investigated the possibility of enhancing the shelf life of plum fruit coated with rice starch-ι-carrageenan (RS-ι-car) composite coating blended with sucrose fatty acid esters (FAEs). Film solution (starch 3%, carrageenan 1.5% and FAEs 2%) was prepared by mixing the ingredients and properties of stand-alone films (physical, mechanical, barrier and surface morphology) were studied before applying the coating on fruit surface. Fruit were stored at 20 °C for 3 weeks and analyzed for weight loss, ethylene production, respiration rate, color change, firmness, and titratable acidity (TA) and soluble solid content (SSC). Surface morphology of stand-alone film and fruit surface (after applying on the plum fruit) was studied using scanning electron microscopy (SEM). Phytochemical analysis was performed during the storage period and total phenolic content (TPC), total antioxidant capacity (TAC), flavonoid content (FC) and free radical scavenging activity were determined. The rice starch composite coating was shown to be effective in reducing both weight loss (WL) and respiration rate and inhibiting the endogenous ethylene production when compared to the uncoated control fruit stored at room temperature (p < 0.05). TPC, TAC, FC and free radical scavenging activity was unaffected in the coated fruit throughout the storage period (p < 0.05). The findings reported in this study indicate that the RS-ι-car-FAEs coating prolongs the shelf life and maintains the overall quality of plum fruit during storage and could potentially be commercialized as a new edible coating for the plum fruit industry
- …