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Abstract
Sequence mappability is an important task in genome resequencing. In the (k,m)-
mappability problem, for a given sequence T of length n, the goal is to compute a
table whose i th entry is the number of indices j �= i such that the length-m substrings
of T starting at positions i and j have at most k mismatches. Previous works on this
problem focused on heuristics computing a rough approximation of the result or on
the case of k = 1. We present several efficient algorithms for the general case of the
problem. Our main result is an algorithm that, for k = O(1), works in O(n) space
and, with high probability, in O(n · min{mk, logk n}) time. Our algorithm requires a
careful adaptation of the k-errata trees of Cole et al. [STOC 2004] to avoid multiple
counting of pairs of substrings. Our technique can also be applied to solve the all-
pairs Hamming distance problem introduced by Crochemore et al. [WABI 2017]. We
further develop O(n2)-time algorithms to compute all (k,m)-mappability tables for
a fixed m and all k ∈ {0, . . . ,m} or a fixed k and all m ∈ {k, . . . , n}. Finally, we
show that, for k,m = �(log n), the (k,m)-mappability problem cannot be solved in
strongly subquadratic time unless the Strong Exponential Time Hypothesis fails. This
is an improved and extended version of a paper presented at SPIRE 2018.
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1 Introduction

The k-mappability problemAnalyzingdata derived frommassively parallel sequencing
experiments often depends on the process of genome assembly via resequencing;
namely, assemblywith the help of a reference sequence. In this process, a large number
of reads (or short sequences) derived from aDNAdonor during these experimentsmust
be mapped back to a reference sequence, comprising a few gigabases, to establish the
section of the genome from which each read has been derived. An extensive number
of short-read alignment techniques and tools have been introduced to address this
challenge emphasizing on different aspects of the process [16].

In turn, the process of resequencing depends heavily on how mappable a genome
is with respect to reads of some fixed length m. Thus, given a reference sequence, for
every substring of length m in the sequence, we want to count how many additional
times this substring appears in the sequence when allowing for a small number k
of errors. This computational problem and a heuristic approach to approximate the
solution were first proposed in [12] (see also [5]), where a great variance in genome
mappability between species and gene classes was revealed.

More formally, for a string T , let Tm
i denote the length-m substring of T that starts

at position i . In the (k,m)-mappability problem, for a given string T of length n, we
are asked to compute a table Am

≤k whose i th entry Am
≤k[i] is the number of indices

j �= i such that the substrings Tm
i and Tm

j are at Hamming distance at most k. In the
previous study [12], the assumed values of parameters were k ≤ 4, m ≤ 100, and the
alphabet of T was {A,C,G,T}.
Example 1.1 Consider a string T = aababba andm = 3. The following table shows
the (k,m)-mappability counts for k = 1 and k = 2.

position i 1 2 3 4 5
substring T 3

i aab aba bab abb bba

(1, 3)-mappability A3≤1[i] 2 2 1 2 1

(2, 3)-mappability A3≤2[i] 3 3 3 4 3

difference A3=2[i] 1 1 2 2 2

For instance, consider the position 1. The (1, 3)-mappability is 2 due to the occur-
rences of bab and abb at positions 3 and 4, respectively. The (2, 3)-mappability is 3
since only the substring bba, occurring at position 5, has three mismatches with aab.

For convenience, our algorithms compute an array Am=k whose i th entry Am=k[i]
is the number of positions j �= i such that substrings Tm

i and Tm
j are at Hamming

distance exactly k. Note that Am
≤k[i] = ∑k

κ=0 A
m=κ [i]; see the “difference” row in the

example above. Henceforth, we call this problem the (k,m)-mappability problem.
Using the suffix array and the LCP table [24,26,30], the (0,m)-mappability problem

can be solved in O(n) time and space. Known solutions for computing (1,m)-
mappability are shown in Table 1; the O(nm)-time and the O(n)-average-time
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Table 1 Known algorithms for computing (1,m)-mappability for strings over constant-sized alphabets

Solution Time complexity

Manzini [31] O(mn log n/ log log n)

Alzamel et al. [3] O(nm)

Alzamel et al. [3] O(n log n log log n)

Alzamel et al. [3] O(n) on average for m = �(log n)

Hooshmand et al. [21], Amir et al. [4] O(n log n)

Amir et al. [4] O(n) for m = �(
√
n)

All algorithms use O(n) space

solutions of Alzamel et al. [3] work also on strings over integer alphabets {1, . . . , σ }
for σ = nO(1). Moreover, the latter algorithm was shown to be generalizable to arbi-
trary k, requiring O(n) space and, on average, O(kn) time if m = �(k logσ n). A
practically fast algorithm for arbitrary k was presented in [32]. In [1], the authors intro-
duced an efficient construction of a genome mappability array Bk in which Bk[μ] is
the smallest length m such that at least μ of the length-m substrings of T do not occur
elsewhere in T with at most k mismatches. This construction was further improved in
[6].

The all-pairs Hamming distance problem The evolutionary relationships between dif-
ferent species or taxa are usually inferred through phylogenetic analysis techniques.
Some of these techniques rely on the inference of phylogenetic trees. A first step
of these techniques is to compute the distances between all pairs of sequences rep-
resenting the set of species or taxa under study [35]. This particular step, however,
often dominates the running time of these methods. Depending on the application,
the underlying model of evolution, and the optimality criterion, it may not be strictly
necessary to be aware of the complete distancematrix (see [11,17], for instance). Thus,
in this preprocessing step, we are only interested in pairs with distances not exceeding
a given threshold.

The computational problem can be formally defined as follows. Given a set R of r
length-m strings and an integer k ∈ {0, . . . ,m}, return all pairs (X1, X2) ∈ R × R,
with X1 �= X2, such that X1 and X2 are at Hamming distance at most k. This problem
has been studied in the average-case model and efficient linear-time algorithms are
known under some constraints on the value of k and some assumptions on the elements
of R [11,20,29]. In particular, these algorithms work in O(rm) average-case time if
k <

(m−k−1) log σ
log rm and the elements of R are over an integer alphabet � of size

σ > 1 with the letters of the strings being independent and identically distributed
random variables uniformly distributed over �. The indexing variant of the all-pairs
Hamming distance problem has further applications in bioinformatics for querying
typing databases [8] and in information retrieval for searching similar documents in a
collection [19].

Intuitively, there is a connection between the (k,m)-mappability problem and the
all-pairs Hamming distance problem that allows to transfer the technique used in the
solution to the former to a solution to the latter (it is not a formal reduction between
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problems). The connection is as follows: by first concatenating the r elements of R
to construct a new string T of length n = rm, solving the former considering only
the r substrings of T starting at positions i with i mod m = 1, and summing up the
resulting values, we would obtain the total size of the output of the latter.

Henceforth, we assume, as in the mappability problem, that we are to compute all
pairs at Hamming distance exactly k. In the end, we run the algorithm for all values
of k up to a given threshold of interest.

Our contributions. We present several algorithms for the general case of the (k,m)-
mappability problem. More specifically, our contributions are as follows:

1. In Sect. 3, we show a randomized Las-Vegas algorithm for the (k,m)-mappability
problem that works in O(n

(log n+k
k

)
4kk) time with high probability1 and O(n2kk)

space for a string over any ordered alphabet. It requires a careful adaptation of the
technique of recursive heavy-path decompositions in a tree [10].

2. In Sect. 4, we show an algorithm to solve the all-pairs Hamming distance problem
for strings over any ordered alphabet that works in O(rm + r

(log r+k
k

)
4kk log r +

output · 2kk log r) time and O(rm + r2kk log r) space.
3. In Sect. 5, we show an algorithm for the (k,m)-mappability problem that works

in O(nk · (m + 1)k) time and O(n) space for a string over an integer alphabet.
Together with the first result, this yields an O(n ·min{mk, logk n})-time and O(n)-
space algorithm for k = O(1).

4. In Sect. 6, we show O(n2)-time algorithms for a string over any ordered alphabet
to compute all (k,m)-mappability tables for a fixed m and all k ∈ {0, . . . ,m}, or
for a fixed k and all m ∈ {k, . . . , n}.

5. Finally, in Sect. 7, we prove that the (k,m)-mappability problem for k,m =
�(log n) cannot be solved in strongly subquadratic time unless the Strong Expo-
nential Time Hypothesis [22,23] fails.

In contributions 1 and 5, we apply recent advances in the Longest Common Substring
with k Mismatches problem that were presented in [9,27], respectively (see also [34]).
In particular, compared to [9], our contribution 1 requires a careful counting of sub-
string pairs to avoid multiple counting and a thorough analysis of the space usage.
Technically this is the most involved contribution. Contributions 1, 2, and 4 apply to
strings over an arbitrary ordered alphabet; the running times of the respective algo-
rithms are �(n log n), which is sufficient to renumber the letters of the input text so
that its alphabet becomes an integer alphabet.

This work is an extended version of [2]. In comparison to the conference version,
in particular, we improve the complexity of the main algorithm by a �(log n)-factor,
remove the dependency on the alphabet size in contribution 3, and apply our techniques
to solve the all-pairs Hamming distance problem (contribution 2).

1 With probability at least 1 − n−c for an arbitrarily large predefined constant parameter c > 0.

123



Algorithmica

2 Preliminaries

Let T = T [1]T [2] · · · T [n] be a string of length |T | = n over a finite ordered alphabet
� of size |�| = σ . The empty string is denoted by ε. In some algorithms we assume
that the string is over an integer alphabet, i.e., � = {1, . . . , nO(1)}. For two positions
i and j on T , the substring (sometimes called factor) of T that starts at position i
and ends at position j is T [i] · · · T [ j] (it is of length 0 if j < i). A prefix of T is a
substring that starts at position 1 and a suffix of T is a substring that ends at position
n. We denote the suffix that starts at position i by Ti and its prefix of length m by Tm

i .
The Hamming distance between two strings S and T of the same length |S| = |T |

is defined as dH (S, T ) = |{i ∈ {1, 2, . . . , |S|} : S[i] �= T [i]}|. If |S| �= |T |, we set
dH (S, T ) = ∞.

By lcp(U , V ) we denote the length of the longest common prefix of strings U and
V . For a fixed string T , we also set lcp(r , s) = lcp(Tr , Ts).

Compact trie. A trie of a collection of strings C is a labeled tree that contains a
node for every distinct prefix of a string in C ; the root node is ε; the set of termi-
nal nodes is C ; and edges are of the form u

c→ uc, where u and uc are nodes and
c ∈ �. A compact trie T of a collection of strings C is obtained from the trie of
C by dissolving all non-branching nodes, excluding the root and the terminals. The
nodes of the trie which become nodes of T are called explicit nodes, whereas the
other nodes are called implicit. Each edge of T can be viewed as an upward max-
imal path of implicit nodes starting with an explicit node. The string label of an
edge is a substring of one of the strings in C ; the label of an edge is the first let-
ter of the edge’s string label. Each node of the trie can be represented in T by the
edge it belongs to and an index within the corresponding path. We let L(v) denote
the path-label of a node v, i.e., the concatenation of the string labels of the edges
along the path from the root to v. Additionally, D(v) = |L(v)| is the string-depth of
node v.

Suffix tree.The suffix tree of a string T is the compact trie representing all suffixes of T .
The suffix tree of a string T of length n over an integer alphabet can be constructed
in O(n) time [14] and, after an O(n)-time preprocessing [7], it can be used to answer
lcp(r , s) queries in O(1) time.

Hashing.We use perfect hashing to implement dynamic dictionaries supporting inser-
tions and deletions of entries (key-value pairs), as well as look-ups of entries with a
given key. Technically, we maintain a single global dictionary (which may simulate
multiple local dictionaries) implemented using the following result originating from
the work of Dietzfelbinger and Meyer auf der Heide [13].

Theorem 2.1 (see [13, Theorem 5.5]) For any constant c > 1 and positive integer n,
there is a data structure that maintains a dynamic dictionary D of size |D| ≤ n with
the following guarantees:

1. The data structure occupies O(n) space.
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1. Handling anym ≤ nc operations (look-ups, insertions, and deletions) in an on-line
fashion costs O(n + m) time in total2 with probability at least 1 − n−c.

The constants in the time and space bounds depend on c.

The original data structure of [13, Theorem5.5] supports n operations in O(n) time
with probability at least 1 − n−c. To allow m ≤ nc operations, we use instances
supporting 2n operations in O(n) time with probability at least 1 − n1−2c, and we
build such an instance from scratch after completing every n operations (using |D| ≤ n
insertions out of the allowance of 2n operations). By the union bound, all m ≤ nc

operations are thus handled in O(n + m) total time with probability at least 1 − n−c.
When using strings as dictionary keys, we rely on Karp–Rabin fingerprints (poly-

nomial hashing) [25] with collision probability bounded by n−C for strings of length at
most n (and a sufficiently large constant C). In order to obtain Las-Vegas algorithms,
we provide mechanisms for detecting collisions and resort to naive polynomial-time
solutions upon detecting any.

3 ComputingMappability inO(n logk n) Time andO(n) Space

Our algorithm operates on so-called modified strings. A modified string α is a pair
(U (α), M(α)), whereU (α) is a string and M(α) a set of modifications. Each element
of the setM(α) is a pair of the form (i, c)which denotes a substitution “U (α)[i] := c”.
We assume that no two pairs in M(α) share the same index i . By val(α), we denote the
string U (α) after all the substitutions. The sets M(α) for modified strings are imple-
mented as (functional) lists. Whenever a modified string β is obtained by introducing
an extra modification to a modified string α, the head of M(β) represents the new
modification whereas the tail points to M(α). We always introduce modifications in
the left-to-right order so that the lists M(α) are sorted according to the decreasing
order of indices i .

The algorithm processes modified substrings of T that are modified strings origi-
nating from the substrings Tm

i . In this case, the strings U (α) are not stored explicitly.
Instead, for a modified substring α originating from Tm

i , an index idx(α) = i is stored.

Overview of the algorithm Intuitively, the algorithm proceeds by efficiently simu-
lating transformations of a compact trie of modified substrings, initially containing all
substrings Tm

i .3 The elementary transformations are guided by the smaller-to-larger
principle, and each of them consists in copying one subtree unto its sibling, with an
appropriate modification introduced to each copied substring in order to match the
label of the edge leading to the sibling. This process effectively results in registering
one mismatch for a large batch of substrings at once, and therefore lays a foundation
to solve the main problem in the aforementioned time.

2 Through standard deamortization, we could achieve, with high probability, O(1)-time operations after
O(n)-time initialization. However, this would not benefit the main results of this paper.
3 The true course of the algorithm will not actually perform much of its operations on a compact trie, but
the intuition is best conveyed by visualizing them this way.
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Fig. 1 To the left: a trie of all length-3 substrings of aabbab. To the right: an effect of copying the right
subtree unto the left subtree, which corresponds to changing the first letter of all its substrings from b
to a. In the original trie, there was exactly one pair of substrings from different subtrees of the root at
Hamming distance 1; after the operation, there is a leaf containing modified substrings corresponding to
these substrings. Such copy operations are performed in our algorithm top-down in the trie, making sure
that each resulting modified substring has at most k modifications

The trie is constructed top-down recursively, and the final set of modified substrings
that are present in the trie is known only when all the leaves of the trie have been
reached.

A node v of the trie stores a set of modified substrings MS(v). Initially, the root r
stores all substrings Tm

i in its set MS(r). The path-label L(v) is the longest common
prefix of (the values of) all the modified substrings inMS(v) and the string-depthD(v)

is the length of this prefix. None of the strings in MS(v) contains a modification at a
position greater than D(v). The children of v are determined by subsets ofMS(v) that
correspond to different letters at position D(v) + 1. Furthermore, additional modified
substrings with modifications at position D(v) + 1 are created and inserted into the
children’s MS-sets. This corresponds to the intuition of copying subtrees unto their
siblings; see Fig. 1.

The goal is to propagate the modified substrings to the leaves and, by process-
ing each leaf independently, register exactly once every pair of substrings (Tm

i , Tm
j )

differing on exactly k positions.
Now, we will describe the recursive routine for visiting a node.
Processing an internal node Assume that our node v has children u1, . . . , ua .

First, we distinguish a child of v with maximum-size set MS, with ties being broken
arbitrarily; let it be u1. We will refer to this child as heavy and to every other as
light. We will recursively branch into each child to take care of all pairs of modified
substrings contained in any single subtree.

For this, we create an extra child ua+1 so that MS(ua+1) contains all modified
substrings fromMS(u2) ∪ · · · ∪MS(ua) with the letters at position D(v) + 1 replaced
by a commonwildcard character $. By processing the subtree of ua+1, wewill consider
pairs of modified substrings that originate from different light children.

Additionally, we insert all modified substrings from MS(u2) ∪ · · · ∪ MS(ua) into
MS(u1), substituting the letter at position D(v) + 1 with the common letter at this
position of modified substrings inMS(u1). This transformation will take care of pairs
between the heavy child and the light ones.
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As modified substrings with more than k substitutions are irrelevant for our algo-
rithm, we refrain from creating them in the interest of time and space complexity.

Finally, the algorithm branches into the subtrees of u1, . . . , ua+1. A pseudocode of
this process is presented as Algorithm 1.

Let us note that, in the special case of a binary alphabet, the child ua+1 need not be
created. Indeed, in this case, each node has at most two children, hence at most one
light one, whereas when processing the subtree of ua+1, we consider pairs of modified
substrings that originate from different light children.

Algorithm 1: A recursive procedure of processing a trie node
Procedure processNode(v)

lcp(v): computes the longest common prefix of all the strings in {val(α) : α ∈ MS(v)}
insert(v, α): inserts α intoMS(v)

splitByLetter(v, index): splits MS(v) into groups having the same index-th letter,
returning a list of sets of modified substrings

depth ← lcp(v)

if depth = m then
processLeaf(v)
return

children ← splitByLetter(v, depth + 1)
heavyChild ← findHeaviest(children)
heavyLetter ← val(α)[depth+1] for some α ∈ heavyChild
wildcardTree ← ∅
foreach lightChild ∈ children \ {heavyChild} do

foreach α ∈ lightChild do
if |M(α)| < k then

α′ ← α

α′[depth+1] ← $
insert(wildcardTree, α′)
α′′ ← α

α′′[depth+1] ← heavyLetter
insert(heavyChild, α′′)

foreach child ∈ children ∪ {wildcardTree} do
processNode(child)

Processing a leaf Each modified substring α stores its index of origin idx(α) and
the set of modifications M(α). As we have seen, the substitutions introduced in the
recursion are of two types: of wildcard origin and of heavy origin. For a modified
substring α, we introduce a partition M(α) = W (α) ∪ H(α) into modifications of
these kinds. For every leaf v, the modified substrings α ∈ MS(v) share the same
value val(α), and hence W (α) is also the same. Finally, by W−1(α) we denote the
set {( j, Tm

idx(α)[ j]) : ( j, $) ∈ W (α)}. We call modified substrings α, β ∈ MS(v)

compatible if they satisfy the following condition:

H(α) ∩ H(β) = ∅, W−1(α) ∩ W−1(β) = ∅, |H(α)| + |H(β)| + |W (α)| = k.

(3.1)
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Lemma 3.3 below shows that if two modified substrings are compatible, then the
original substrings were at Hamming distance at most k. Intuitively, α and β are
compatible only if the positions of modifications in M(α) ∪ M(β) do not contain any
position j such that Tm

idx(α)[ j] = Tm
idx(β)[ j].

Example 3.1 Let us consider modified strings α1, . . . , α6 with the following original
strings and sets of modifications such that val(αi ) = aba$c for all i = 1, . . . , 6.

i U (αi ) H(αi ) W (αi ) W−1(αi ) dH (U (α1),U (αi ))

1 aaabc {(2,b)} {(4, $)} {(4,b)} 0
2 bbacc {(1,a)} {(4, $)} {(4,c)} 3
3 abbcb {(3,a), (5,c)} {(4, $)} {(4,c)} 4
4 abacc ∅ {(4, $)} {(4,c)} 2
5 acacc {(2,b)} {(4, $)} {(4,c)} 2
6 ababa {(5,c)} {(4, $)} {(4,b)} 2

Let us notice that W (αi ) is the same for all i . Let k = 3. The only modified string
that is compatible with α1 is α2. Each of the remaining modified strings violates
exactly one of the conditions from Eq. 3.1: |H(α1)| + |H(α3)| + |W (α1)| = 4,
|H(α1)|+|H(α4)|+|W (α1)| = 2, H(α1)∩H(α5) = {(2,b)},W−1(α1)∩W−1(α6) =
{(4,b)}. Indeed, we have dH (U (α1),U (α2)) = 3 and dH (U (α1),U (αi )) �= 3 for
i ∈ {3, . . . , 6}.

As proved in Lemma 3.8 below, for every α ∈ MS(v), we should increment
Am

=k[idx(α)] for each compatible β ∈ MS(v). We next show how to efficiently count
these modified substrings using the inclusion–exclusion principle and several precom-
puted values, as we cannot afford to count them naively.

For convenience, let R(α) denote the union of disjoint sets H(α) and W−1(α).
For a leaf v, let Count(s, B) denote the number of modified substrings β ∈ MS(v)

such that |H(β)| = s and B ⊆ R(β). All the non-zero values Count(·, ·) are stored
in a hash table. They can be generated by iterating through all the subsets of R(β)

for all modified substrings β ∈ MS(v); this costs O(2kk|MS(v)|) time and space.
Finally, the result for a modified substring α can be computed using the following
direct consequence of the inclusion–exclusion principle.

Lemma 3.2 The number of modified substrings β ∈ MS(v) that are compatible with
a modified substring α ∈ MS(v) is

∑
B⊆R(α)(−1)|B|Count(k − |M(α)|, B).

Proof First, let h = k−|M(α)|. We want to count the modified substrings β ∈ MS(v)

that satisfy |H(β)| = h and R(α) ∩ R(β) = ∅. For (i, x) ∈ R(α), let A(i,x) = {β ∈
MS(v) : |H(β)| = h and (i, x) ∈ R(β)}. Then, we want to compute Count(h,∅) −
| ⋃(i,x)∈R(α) A(i,x)|. By the inclusion–exclusion principle, we have
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Fig. 2 Computation of (2, 3)-mappability for the string T = aababba fromExample 1.1. Edges leading to
heavy children are drawn in bold.Note that the alphabet is binary in this case, sowildcard subtrees donot need
to be introduced; the only substitutions are from the (at most one) light child to the heavy child. The letters
shown above are the original letters before the substitutions. The pairs of compatible modified substrings
are indicated with arrows; in the binary case, 3.1 implies that these are substrings with modifications at
different positions and exactly k = 2 modifications in total. In the end, A3=2[1] = A3=2[2] = 1 and

A3=2[3] = A3=2[4] = A3=2[5] = 2 as expected

Fig. 3 Computation of (1, 2)-mappability for the string T = aabaca. This example illustrates the need to
use of wildcard symbols for a non-binary alphabet, as otherwise pairs from different light children of the
same node would not be registered. In this case k = 1, so modified substrings are compatible if and only
if at most one of them has a modification or both have a modification of the wildcard-type which originate
from different letters. We have A2=1[1] = 4 and A2=1[2] = A2=1[3] = A2=1[4] = A2=1[5] = 2

∣
∣
∣
∣
∣
∣

⋃

(i,x)∈R(α)

A(i,x)

∣
∣
∣
∣
∣
∣
=

∑

B �=∅, B⊆R(α)

(−1)|B|+1

∣
∣
∣
∣
∣
∣

⋂

(i,x)∈B
A(i,x)

∣
∣
∣
∣
∣
∣

=
∑

B �=∅, B⊆R(α)

(−1)|B|+1Count(h, B),

which concludes the proof. ��
Examples Examples of the execution of the algorithm for a binary and a ternary string
can be found in Figs. 2 and 3, respectively.
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Correctness We will show that it is enough to count pairs of modified substrings
obtained in the leaves. First we show that a pair of compatible modified substrings
implies a pair of length-m substrings at Hamming distance at most k.

Lemma 3.3 If α, β ∈ MS(v) are compatible with i = idx(α), and j = idx(β), then
dH (Tm

i , Tm
j ) = k.

Proof By Eq. 3.1 we have W−1(α) ∩ W−1(β) = ∅, so Tm
i and Tm

j differ at positions
of modifications in W (α) = W (β). They also differ at positions of modifications in
H(β) since at the nodes corresponding to these positions, an ancestor of α (that is, the
modified substring from which α originates) was in the heavy child and an ancestor
of β originated from a light child (recall that Eq. 3.1 includes H(α) ∩ H(β) = ∅).
Symmetrically, Tm

i and Tm
j differ at positions ofmodifications in H(α). In conclusion,

they differ at positions of modifications in H(α) ∪ H(β) ∪ W (α). The three sets
are disjoint, so |H(α) ∪ H(β) ∪ W (α)| = |H(α)| + |H(β)| + |W (α)| = k by
Eq. 3.1. This shows that dH (Tm

i , Tm
j ) ≥ k. With val(α) = val(β), we conclude that

dH (Tm
i , Tm

j ) = k. ��
We proceed with a proof that if two length-m substrings are at distance at most k,

then some leaf contains a pair of corresponding modified substrings that are compati-
ble. Let us start with an observation that lists some basic properties of our algorithm.
Both parts can be shown by straightforward induction.

Observation 3.4 (a) If a node v stores modified substrings α, β ∈ MS(v), then it has
a descendant v′ with D(v′) = lcp(val(α), val(β)) and α, β ∈ MS(v′).

(b) Every node stores at most one modified substring originating from the same sub-
string Tm


 .

We use the following auxiliary lemma.

Lemma 3.5 Assume that dH (Tm
i , Tm

j ) = k and let 1 ≤ x1 < x2 < · · · < xk ≤ m
be the indices where the two substrings differ. Further let xk+1 = m + 1. For every
p ∈ {1, . . . , k + 1}, there exist a node vp and modified substrings αp, βp ∈ MS(vp)

such that:

– idx(αp) = i and idx(βp) = j ;
– lcp(val(αp), val(βp)) = xp − 1 = D(vp);
– for each position x1, . . . , xp−1, both M(αp) and M(βp) contain modifications
of wildcard origin, or exactly one of these sets contains a modification of heavy
origin;

– there are no other modifications in M(αp) or M(βp).

Proof The proof goes by induction on p. Asα1 andβ1,we take (un)modified substrings
such that idx(α1) = i , idx(β1) = j , and M(α1) = M(β1) = ∅. They are stored in the
set MS(r) for the root r , so Observation 3.4(a) guarantees the existence of a node v1
with D(v1) = lcp(α1, β1) and α1, β1 ∈ MS(v1).

Let p > 1. By the inductive hypothesis, the set MS(vp−1) contains modified
substrings αp−1 and βp−1. The node vp−1 has children w1, w2 corresponding to
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letters Tm
i [xp−1] and Tm

j [xp−1], respectively. If w1 is the heavy child, then w2 is
a light child and a modified substring β ′ such that idx(β ′) = j and M(β ′) =
M(βp−1) ∪ {(xp−1, Tm

i [xp−1])} is inserted to MS(w1). Then, we take α′ = αp−1.
The case that w2 is the heavy child is symmetric. Finally, if both w1 and w2 are
light children, a child u of vp−1 is created along the wildcard symbol $. There
exist modified substrings α′, β ′ ∈ MS(u) such that: idx(α′) = i , idx(β ′) = j ,
M(α′) = M(αp−1) ∪ {(xp−1, $)}, and M(β ′) = M(βp−1) ∪ {(xp−1, $)}.

In either case, we have lcp(val(α′), val(β ′)) = xp − 1. The set (M(α′) ∪ M(β ′)) \
(M(αp−1) ∪ M(βp−1)) contains either a modification of heavy origin in one of
the modified substrings or modifications of wildcard origin in both. Hence, by
the inductive hypothesis, we can set αp = α′ and βp = β ′. The node vp with
D(vp) = lcp(val(αp), val(βp)) and αp, βp ∈ MS(vp) must exist due to Observa-
tion 3.4(a). ��
Example 3.6 Let us consider strings α = aab and β = aba from Fig. 2 that differ
at positions x1 = 2 and x2 = 3. The trie in the figure has a path that contains nodes
storing the modified substrings from the following table.

p α M(αp) val(αp) β M(βp) val(βp) D(vp)

1 aab ∅ aab aba ∅ aba 1
2 aab {(2,b)} abb aba ∅ aba 2
3 aab {(2,b)} abb abb {(3,b)} abb 3

The following corollary is a direct consequence of Lemma 3.5.

Corollary 3.7 If dH (Tm
i , Tm

j ) = k, then there is a leaf v and a pair of compatible
modified substrings α, β ∈ MS(v) with i = idx(α) and j = idx(β).

Proof Lemma 3.5, applied for p = k + 1, yields a leaf vk+1 that contains compatible
modified substrings α = αk+1 and β = βk+1 with idx(α) = i and idx(β) = j . ��

The following lemma, a stronger version of the corollary, together with Lemma 3.3
shows that Algorithm 1 correctly computes the mappability table Am

=k .

Lemma 3.8 If dH (Tm
i , Tm

j ) = k, then there is exactly one leaf v and exactly one pair
of compatible modified substrings α, β ∈ MS(v) with i = idx(α) and j = idx(β).

Proof Corollary 3.7 implies that there is at least one leaf that contains compatible
modified substrings α and β with idx(α) = i and idx(β) = j . Now, it suffices to
check that there is no other pair of compatible modified substrings (α′, β ′) �= (α, β)

that would be present in some leaf u and satisfy idx(α′) = i and idx(β ′) = j .
We apply Lemma 3.5. Let us first note that M(α′) ∪ M(β ′) must contain mod-

ifications at positions x1, . . . , xk (since val(α′) = val(β ′)) and no modifications at
other positions (otherwise, |H(α′)| + |H(β ′)| + |W (α′)| would exceed k). Let p be
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the greatest index in {1, . . . , k + 1} such that xp − 1 ≤ lcp(val(α), val(α′)). By
Observation 3.4(b), u �= vk+1, so p ≤ k.

Thus, the node vp is an ancestor of the leaf u, but the node vp+1 is not. Let us
consider the children w1, w2 of vp obtained by following edges with labels Tm

i [xp]
and Tm

j [xp], respectively. If w1 is the heavy child, β ′ must contain a modification of
heavy origin at position xp, so vp+1 is an ancestor of u; a contradiction. The same
contradiction is obtained in the symmetric case that w2 is the heavy child. Finally,
if both w1 and w2 are light, then either both α′ and β ′ contain a modification of
wildcard origin at position xp, which again gives a contradiction, or they both contain
a modification of heavy origin, which contradicts the first part of Eq. 3.1. ��
Remark 3.9 The recursive approachpresented above is somewhat similar to the scheme
used by Thankachan et al. [34] for computing the longest common substring with
up to k mismatches of two strings. We attempted to adapt the approach of [34] to
computing k-mappability, but failed. Another virtue of our approach is that we obtain
time complexity better by a factor of k! for super-constant k.
Implementation and complexity Our Algorithm 1, excluding the counting phase in the
leaves, has exactly the same structure as Algorithm 1 in [9]. This is verified in detail
in “Appendix A”. Proposition 13 from [9] provides a bound on the total number of
the generated modified strings and an efficient implementation based on finger-search
trees. We apply that proposition for a family F composed of substrings Tm

i to obtain
the following bounds.

Fact 3.10 (see [9, Proposition 13]) Algorithm 1 applied up to the leaves takes
O(n

(log n+k+1
k+1

)
2k) time and generates O(n

(log n+k
k

)
2k) modified substrings.

Let us further analyze the space complexity of the algorithm.

Observation 3.11 If a node v is a child of w, then every element of MS(v) is either an
element of MS(w) or a modified substring originating from an element of MS(w).

Lemma 3.12 Algorithm 1 applied up to the leaves uses O(nk) working space.

Proof We assume that, upon termination, the procedure processNode discards
the set MS(v) and all the modified strings created during its execution. This way,
the whole memory allocated within a given call to processNode is freed. Since
processNode returns no output and its only side effects are updates of the array
Ak=, no information is lost through such garbage collection.

A call to processNode(v) for node v partitions the listMS(v) into sublists corre-
sponding to u1, . . . , ua , creates 2(|MS(u2)|+· · ·+|MS(ua)|) newmodified substrings
(each requiring constant space to be stored), appends them to sublists corresponding
to u1 and ua+1, and then recurses on the sublists. In particular, the elements of the
original listMS(v) are not copied but reused in the recursive call.

Let us consider a root-to-leaf path ρ in the recursion. Each recursive call uses O(1)
local variables, which take O(n) space overall.We also need to bound the total number
of modified substrings created by calls to processNode for nodes on the path ρ.

By Observations 3.11 and 3.4(b), |MS(v)| is non-increasing on ρ. Moreover, if v

is a light child of its parent w, then |MS(v)| ≤ |MS(w)|/2. Let us consider all nodes
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w on ρ such that the unique child of w that is on ρ is a light child. The total number
of modified strings created by the calls to processNode(w) for all such nodes w is
O(n) since we can bound it from above by a geometric series that sums to O(n).

As for the calls to processNode(w) for the remaining nodes on ρ, for every two
modified strings they create, they put one of them in the child of w that also belongs
to ρ. Hence, it suffices to bound the total number of modified substrings originating
from Tm

i for each position i that are in MS(v) for some node v on ρ. For a given
position i , let α1, . . . , αb be all such modified substrings originating from Tm

i . By
Observation 3.11, we have M(α1) � M(α2) � · · · � M(αb) and thus b ≤ k. In total,
we create O(nk) modified substrings in calls to processNode on nodes of ρ. ��

Next, we show how to improve the time complexity of Algorithm 1 by a relatively
small change in its execution. Intuitively, we will take advantage of the fact that the
modified substrings in a leaf of the recursion do not need to be sorted lexicographically.

Namely, whenever a modified substring β with exactly k modifications is created
at a node v (i.e., |M(α)| = k − 1 in the if-statement), we do not include β in the
recursive call of wildcardTree or heavyChild. Instead, an entry (val(β), β) is inserted
into a global hash table. When processing a leaf v containing modified substrings
with a common value val(α), we need to move all modified substrings with value
val(α) from the global hash table to the set MS(v). Finally, if any modified string β

created while processing a given node v remains in the hash table upon completion
of processNode(v), then β is removed from the hash table together with all other
modified substrings with the value val(β). At this moment, an artificial leaf of the
recursion containing all these modified substrings is created, and the standard routine
is applied to process this leaf.

Recall that the hash table uses Karp–Rabin fingerprints to index strings and col-
lisions could incur incorrect results in the algorithm. To tackle this issue, whenever
a modified substring β is inserted to the hash table and there is another modified
substring with the same hash in the table, we pick any such modified substring α

and check if val(α) = val(β) in O(k) time using lcp queries on T with a method
that resembles kangaroo jumping [18,28] (it requires O(n)-time preprocessing). By
Lemma 3.12, the hash table contains up to O(nk) entries at any given time, so the
collision probability is O(nk · n−C ) = O(n−C+2). Setting C > c + 2, we can make
sure that this is dominated by the probability that the hash table fails to process the
underlying insertion in O(1) amortized time.

Let us call the resulting algorithm Algorithm 1’.

Lemma 3.13 The outputs of Algorithms 1 and 1’ are the same. Moreover, Algorithm 1’
works in O(n

(log n+k
k

)
2kk) time with high probability (up to the leaves) and uses the

same amount of space as Algorithm 1.

Proof Let v be a leaf in the recursion of Algorithm 1. If MS(v) contains at least one
modified substring with up to k−1 modifications, v will be identified by the recursive
procedure of Algorithm 1’. Then, all modified substrings with exactly k modifications
that belong to v are populated from the global hash table. If MS(v) does not contain
any modified substring with less than k modifications, v will be identified upon a
deletion from the global hash map at the lowest internal node u of the recursion in
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which a modified substring belonging to MS(v) was created. Here, we use the fact
that the path-labels L(u) of all nodes u of the recursion are different. This shows that
indeed the leaves of the recursion of Algorithms 1 and 1’ are the same.

As for the time complexity, the total number of modified substrings created by
Algorithm1’ is the sameas inAlgorithm1, i.e.,O(n

(log n+k
k

)
2k)byFact 3.10.However,

the time necessary to conduct the whole recursive procedure corresponds to the time
complexity of Algorithm 1 if it had been executed with k − 1 instead of k, i.e.,
also O(n

(log n+k
k

)
2k) by Fact 3.10. After O(n)-time preprocessing, for each modified

substring, we can compute its Karp–Rabin fingerprint and check collisions in O(k)
time; this accounts for the additional factor k in the time complexity.

Finally, the space complexity stays the same because modified substrings with
exactly k modifications are removed from the hash table at latest when the recursion
rolls back. ��

Lemmas 3.12 and 3.13 yield the complexity of Algorithm 1’. Note that, due to the
application of the inclusion-exclusion principle in the leaves, we need to multiply the
time complexity of the algorithm by 2k and increase the space complexity by O(n2kk).

Theorem 3.14 There exists a Las-Vegas randomized algorithm that computes the
(k,m)-mappability of a given length-n string in O(n2kk) space and, with high proba-
bility, in O(n

(log n+k
k

)
4kk) time. For k = O(1), the space is O(n) and the time becomes

O(n logk n).

4 All-Pairs Hamming Distance Problem

Let us recall that in the all-pairs Hamming distance problem, given a setR of r length-
m strings and an integer k ∈ {0, . . . ,m}, we are to return all pairs (X1, X2) ∈ R×R,
with X1 �= X2, such that X1 and X2 are at Hamming distance at most k. We will show
how the algorithm from the previous section can be modified to solve this problem at
the cost of an additional log r -factor in the complexity.

We run the algorithm from the previous section for T being a concatenation of
all the strings in R and only with substrings {Tm

i : i mod m = 1} in the root. The
algorithm needs to be updated only at the leaves of the compact trie. Henceforth, let
us consider a trie leaf v with a set MS(v) = {β1, . . . , βp} of modified substrings. We
will further denote this set as MS (|MS| = p). Our goal is to list, for every β ∈ MS,
all β ′ ∈ MS that are compatible with β.

Let us construct a static balanced binary search tree (BST) in which the leaves
correspond to the modified substrings βi . This way, each node of the BST corresponds
to a set of subsequent candidates from the leaves of its subtree. If βi , . . . , β j are the
modified substrings in the leaves of the subtree of a BST node u, then we denote
set(u) = {βi , . . . , β j }. A leaf will be responsible for storing information only for
itself and an internal node stores merged information of its children.

Our goal is to store information in each node u of the BST in such a way that,
for any modified substring α ∈ MS, we will be able to decide whether there is any
other candidate in set(u) that is compatible with α. Therefore, in each node u, we
will compute all the required machinery for using the inclusion-exclusion principle
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on the modified substrings in set(u), that is, a dictionary that stores all non-zero
values of Count(s, B) for modified substrings β ∈ set(u). Since every β ∈ MS is
present in O(log p) sets set(u), precomputing all mentioned information can be done
in O(2kkp log p) time and space.

Our query algorithm for a given modified substring β is a recursive procedure
starting at the root of the BST. Assume that the algorithm is at some BST node u. We
use Lemma 3.2 and the dictionary for set(u) to count the elements β ′ ∈ set(u) that are
compatible with β. If this number is positive, the algorithm recursively descends to
the children of node u. In the end, modified substrings β ′ that are compatible with β

will be listed at the leaves of the BST. The correctness of this algorithm follows from
Lemma 3.8.

Every application of Lemma 3.2 takes O(2kk) time. For each modified substring β ′
that is compatible with a modified substring β, the algorithm will visit O(log p) BST
nodes, which gives O(2kk log p) time for finding each compatible modified substring
β ′ ∈ MS. Note that p ≤ r (see Observation 3.4(b)). Summing up over all trie nodes
v and applying Lemmas 3.13 and 3.12, we obtain the following result. (Observe that
[9, Proposition 13] is applied for a family F of size r rather than n.)

Theorem 4.1 There exists a Las-Vegas randomized algorithm that, given a set of r
length-m strings and an integer k, solves the all-pairs Hamming distance problem in
O(rm+2kkr log r) space and, with high probability, in O(rm+r

(log r+k
k

)
4kk log r +

output · 2kk log r) time. For k = O(1), the space is O(rm + r log r) and the time
becomes O(rm + r logk+1 r + output · log r).

Notably, the algorithm underlying Theorem 4.1 works in O(rm) time (with high
probability) if k = O(1), m = �(logk+1 r), and output = O(rm/ log r).

5 ComputingMappability inO(nmk) Time andO(n) Space

In this section, we generalize the O(nm)-time algorithm for k = 1 and integer alpha-
bets from [3]. To this end, we make use of an approach from [6]. The high-level idea
from [6] is to define a lexicographic order on the suffixes of T that ignores the same
k fixed positions of every suffix. (In fact, the algorithm does the same for many such
combinations of k positions.) The algorithm then uses the suffix tree of T to sort the
modified suffixes according to this new lexicographic order. The focus of the original
algorithm is not on counting substrings that are at Hamming distance at most k, and
so we adapt it with some extra care to avoid multiple counting.

We first generate all
( m
≤k

)
subsets of {1, . . . ,m} of size at most k. For each such

subset F , we consider the length-m substrings of T with their f -th letter substituted
with $ /∈ � for all f ∈ F . We sort all these sets of strings in O(nk

( m
≤k

)
) total time

using the approach of [6], also obtaining the maximal blocks of equal strings in the
sorted lists.

We now briefly describe the algorithm for sorting one such set of strings in time
O(nk) for the sake of completeness. Let us assume for simplicity that F = { f } as
the algorithm can be generalized trivially for larger sets. We first retrieve the sorted
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list of T f−1
i for all i from the suffix tree. We then give ranks to these strings after

we check equality of adjacent strings in the sorted list using lcp queries. We similarly
rank strings Tm− f

j for all j . Finally, we sort the ranks of the pairs (T f−1
i , Tm− f

i+ f +1)

using bucket sort.
Prior to running the above algorithm, we initialize arrays DK for K ∈ {1, . . . , k}.

For each maximal block, of size b, of equal strings obtained for some set F , we
increment the b relevant entries of D|F | by b − 1.

Note that if dH (Tm
i , Tm

j ) = κ , then this will contribute
(m−κ
K−κ

)
to each of DK [i]

and DK [ j] for K ≥ κ , since there are this many size-K supersets of the set of
mismatching positions in the power set of {1, . . . ,m}. We thus compute Am

=K [i] =
DK [i]−∑K−1

κ=0

(m−κ
K−κ

)
A=κ [i] in increasing order with respect to K , and we are done.

(We precompute all relevant binomial coefficients in O(k2) time.)

Theorem 5.1 Given a string of length n, the (k,m)-mappability problem can be solved
in O(nk

( m
≤k

)
) time and O(n) space. For k = O(1), the time becomes O(nmk).

Combining Theorems 3.14 and 5.1 gives the following result.

Corollary 5.2 For every k = O(1), there exists a randomized algorithm that com-
putes the (k,m)-mappability of a given length-n string in O(n) space and in
O(n · min{mk, logk n}) time with high probability.

6 Computing (k,m)-Mappability for All k or for Allm

Theorem 6.1 The (k,m)-mappability for a given m and all k ∈ {0, . . . ,m} can be
computed in O(n2) time using O(n) space.

Proof We first present an algorithm which solves the problem in O(n2) time using
O(n2) space and then show how to reduce the space usage to O(n).

We initialize an n × n matrix M in which M[i, j] will store the Hamming distance
between substrings Tm

i and Tm
j . Let us consider two letters T [i] �= T [ j] of the input

string, where i < j . Such a pair contributes to a mismatch between the following pairs
of strings:

(Tm
i−m+1, T

m
j−m+1), (T

m
i−m+2, T

m
j−m+2), . . . , (T

m
i , Tm

j ).

This list of strings is represented by a diagonal interval in M , the entries of which
we need to increment by 1. We process all O(n2) pairs of letters and update the
information on the respective intervals. Then Am

=k[i] = |{ j : M[i, j] = k}|.
To achieve O(1) time for each single addition on a diagonal interval, we use a well-

known trick from an analogous problem in one dimension. Suppose that we would
like to add 1 on the diagonal interval from M[x1, y1] to M[x2, y2]. Instead, we can
simply add 1 to M[x1, y1] and −1 to M[x2 +1, y2 +1]. Every cell will then represent
the difference of its actual value to the actual value of its predecessor on the diagonal.
After all such operations are performed,we can retrieve the actual values by computing
prefix sums on each diagonal in a top-down manner.
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To reduce the space usage to O(n), it suffices to observe that the value of M[i, j]
depends only on the value of M[i−1, j−1] and at most two letter comparisons which
can add +1 and/or −1 to the cell. Recall that M[i, j] = dH (Tm

i , Tm
j ). We need to

subtract 1 from the previous result if the first characters of the previous substrings were
equal and add 1 if the last characters of the new substrings were different. Therefore,
we can process the matrix row by row, from top to bottom, and compute the values
Am=0[i], . . . ,Am=m[i] while processing the i th row. ��

By lcpk(i, j)we denote the length of the longest common prefix of Ti and Tj when
up to k mismatches are allowed, that is, the maximum 
 such that dH (T 


i , T 

j ) ≤ k.

Flouri et al. [15] proposed an O(n2)-time algorithm to compute the longest common
substring of two strings S, T with at most k mismatches. Their algorithm actually
computes the lengths of the longest common prefixes with at most k mismatches of
every suffix of S and T and returns the maximum among them. Applied for S = T , it
gives the following result.

Lemma 6.2 [15] For a string T of length n, the values lcpk(i, j) for all i, j ∈
{1, . . . , n} can be computed in O(n2) time.

Theorem 6.3 The (k,m)-mappability for a given k and all m ∈ {k, . . . , n} can be
computed in O(n2) time and space.

Proof First we compute all the values lcpk(i, j) using Lemma 6.2. We initialize an
n × n matrix Q setting all entries to 0. Then, for a pair (i, j) such that lcpk(i, j) = 
,
we increment the entries Q[
, i] and Q[
, j]. Note that if lcpk(i, j) = 
, then i
(resp. j) will contribute 1 to the (k,m)-mappability values Am

≤k[ j] (resp. Am
≤k[i]) for

all m ∈ {k, . . . , 
}. Thus, starting from the last row of Q, we iteratively add row 
 to
row 
 − 1. By the above observation, row m ends up storing the (k,m)-mappability
array Am

≤k . ��

7 Conditional Hardness for k,m = 2(logn)

We will show that (k,m)-mappability cannot be computed in strongly subquadratic
time in case that the parameters are �(log n), unless the Strong Exponential Time
Hypothesis (SETH) of Impagliazzo, Paturi and Zane [22,23] fails. Our proof is based
on the conditional hardness of the following decision version of the Longest Common
Substring with k Mismatches problem.

Common Substring of Length d with k Mismatches
Input: Strings S, T of length n over binary alphabet and integers k, d.
Output: Is there a factor of S of length d that occurs in T with k mismatches?

Lemma 7.1 [27] Suppose there is ε > 0 such that Common Substring of Length d
with k Mismatches can be solved in O(n2−ε) time on strings over binary alphabet for
k = �(log n) and d = 21k. Then SETH is false.
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Theorem 7.2 If the (k,m)-mappability can be computed in O(n2−ε) time for binary
strings, k,m = �(log n), and some ε > 0, then SETH is false.

Proof We make a Turing reduction from Common Substring of Length d with k Mis-
matches. Let S and T be the input to the problem.We compute the (k, d)-mappabilities
of strings S ·T and S ·T d−1

1 and store them in arrays A and B, respectively. Henceforth,
we consider only indices i ∈ {1, . . . , n − d + 1} in the arrays. For each such index,
A[i] holds the number of length-d factors of S, X := Sd−1

n−d+2T
d−1
1 , and T that are at

Hamming distance k from Sdi , and B[i] holds the number of length-d factors of S and
X that are at Hamming distance k from Sdi . For each i , we subtract B[i] from A[i].
Then, A[i] holds the number of length-d factors of T that are at Hamming distance
k from Sdi . Hence, Common Substring of Length d with k Mismatches has a positive
answer if and only if A[i] > 0 for any i ∈ {1, . . . , n − d + 1}.

By Lemma 7.1, an O(n2−ε)-time algorithm for Common Substring of Length d
with kMismatches with k = �(log n) and d = 21k would refute SETH. By the shown
reduction, an O(n2−ε)-time algorithm for (k,m)-mappability with k,m = �(log n)

would also refute SETH. ��

8 Final Remarks

Our main contribution is an O(n · min{mk, logk n})-time O(n)-space algorithm for
solving the (k,m)-mappability problem for a length-n string over an integer alphabet.
Let us recall that genome mappability, as introduced in [12], counts the number of
substrings that are at Hamming distance at most k from every length-m substring of
the text. One may also be interested to consider mappability under the edit distance
model. This question relates also to recent contributions to computing approximate
longest common prefixes and substrings under edit distance [6,33]. In the case of the
edit distance, in particular, a decision needs to be made whether sufficiently similar
substrings only of length exactlym or of all lengths betweenm−k andm+k should be
counted.We leave themappability problemunder edit distance for future investigation.
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A Application of the Construction from [9]

In [9], a recursive procedure shown in Algorithm 2 was developed. This procedure
takes as input a string P and a family FP that consists of tuples (S, F, b) such that
F ∈ F for some string family F, S is a suffix of F of length |S| = |F | − |P|, and
b = k − dH (F, PS) ≥ 0. Intuitively, the parameter b can be seen as a “budget” of
remaining letter substitutions that can be performed in the string (PS obtained from
F) that prevents exceeding the threshold k of mismatches. In the first call, we have
P = ε and FP = {(F, F, k) : F ∈ F}. For a non-empty string S = aS′, where a ∈ �,
we denote suf(S) = S′.

Algorithm 2:A recursive procedure inserting strings with prefix P to sets N (F).
Procedure Generate(P,FP) is

h := a most frequent element of {S[1] : (S, F, b) ∈ FP and S �= ε};
foreach (S, F, b) ∈ FP do // b = k − dH (F, PS) ≥ 0

if S = ε then N (F) := N (F) ∪ {P};
else

c := S[1];
FPc := FPc ∪ { (suf(S), F, b) };
if c �= h and b > 0 then

FPh := FPh ∪ { (suf(S), F, b − 1) };
FP$ := FP$ ∪ { (suf(S), F, b − 1) };

foreach c ∈ � ∪ {$} such that FPc �= ∅ do
Generate(Pc,FPc);

The following result from [9] shows that this abstract procedure can be implemented
efficiently. In the statement below, we ignore the meaning of the resulting family of
strings (which is important for computing the longest common substring of two strings
with k mismatches) and focus only on its size and the complexity of its construction.

Theorem A.1 (see [9, Proposition 13]) Let F ⊆ �∗ be a finite family of strings and
k ≥ 0 be an integer. Then the family F′ = ⋃

F∈F N (F) generated by Algorithm 2 has
size at most 2k

(log |F|+k
k

)|F|. Moreover, the compacted trie of F′ can be constructed in
O(2k |F|(log |F|+k+1

k+1

)
) time provided constant-time lcp queries for suffixes of the strings

F ∈ F.

Let us now inspect how the recursive procedure processNode in Algorithm 1
translates one-to-one to procedure Generate in Algorithm 2 applied for the family
F = {Tm

i : i ∈ {1, . . . , n − m + 1}} to showcase that they are indeed equivalent.
For this string family, if FP contains a triple (ε, F, b) for some F and b, then all the
remaining triples have the first component equal to ε as well as all strings in F are of
the same length.

A node v corresponds to string P and the modified strings in MS(v) correspond to
the triples in FP in such a way that the set MS(v) (composed of pairs (U (α), M(α)))
is

{ (F, {(i, P[i]) : i ∈ {1, . . . , |P|}, F[i] �= P[i]}) : (S, F, b) ∈ FP }.
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In both procedures, we construct light trees, a heavy tree (i.e., the call for Ph), and a
wildcard tree (i.e., the call for P$). These trees are constructed in the same manner.
The modified strings α ∈ MS(v) that get copied to the heavy and wildcard trees in
Algorithm 1 are those that satisfy |M(α)| < k and U (α)[depth+ 1] �= heavyLetter.
In Algorithm 2, the triples (S, F, b) ∈ FP that get copied to families FPh and FP$
are those that satisfy b > 0 and F[|P| + 1] �= h. For α ∈ MS(v) corresponding to
(S, F, b) ∈ FP , we have |M(α)| = k − b, |P| = depth, and heavyLetter = h.4

This yields a bijection between the family of copied modified strings and the family
of copied triples. This concludes that indeed both constructions are equivalent.

Finally, the condition about constant-time lcp-queries on strings F ∈ F from The-
orem A.1, in this case being substrings of the text T , is satisfied with the aid of LCA
queries on a suffix tree of T , so the theorem implies Fact 3.10.
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