
Development and Application of Rice 
Starch Based Edible Coating to 
Improve the Postharvest Storage 
Potential and Quality of Plum Fruit 
(Prunus salicina) 

R. Thakur, P. Pristijono, J. B. Golding, C. E. Stathopoulos, C. J. 
Scarlett, M. Bowyer, S.P. Singh, Q. V. Vuong

This is the accepted manuscript © 2016, Elsevier 
Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International: http://creativecommons.org/licenses/by-
nc-nd/4.0/ 

The published article is available from doi: 
10.1016/j.scienta.2018.04.005 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Abertay Research Portal

https://core.ac.uk/display/228178345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.scienta.2018.04.005
https://doi.org/10.1016/j.scienta.2018.04.005


Development and Application of Rice Starch Based Edible Coating to Improve the 1 

Postharvest Storage Potential and Quality of Plum Fruit (Prunus salicina)  2 

R. Thakur a*, P. Pristijono a, J. B. Golding a, c, C. E. Stathopoulos b, C. J. Scarlett a, M. 3 

Bowyer a, S.P. Singh a, c, Q. V. Vuong a*  4 

a School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW 5 

2258, Australia  6 

b Division of Food and Drink, School of Science, Engineering and Technology, University of 7 

Abertay, Dundee DD1 1HG, UK  8 

c NSW Department of Primary Industries, Ourimbah, NSW 2258, Australia  9 

 10 

 11 

 12 

 13 

*Correspondence to:  14 

R. Thakur 15 

E mail: Rahul.thakur@uon.edu.au 16 

School of Environmental and Life Sciences, Faculty of Science and Information Technology, 17 

University of Newcastle, Brush Road, Ourimbah, NSW 2258, Australia.  18 

Q. V. Vuong  19 

School of Environmental and Life Sciences, Faculty of Science and Information Technology, 20 

University of Newcastle, Brush Road, Ourimbah, NSW 2258, Australia.  21 

Email: vanquan.vuong@newcastle.edu.au 22 

mailto:Rahul.thakur@uon.edu.au


Abstract  23 

The study investigated the possibility of enhancing the shelf life of plum fruit coated with 24 

rice starch-ι-carrageenan (RS-ι-car) composite coating blended with sucrose fatty acid esters 25 

(FAEs). Film solution (starch 3%, carrageenan 1.5% and FAEs 2%) was prepared by mixing 26 

the ingredients and properties of stand-alone films (physical, mechanical, barrier and surface 27 

morphology) were studied before applying the coating on fruit surface. Fruit were stored at 28 

20°Cfor 3 weeks and analyzed for weight loss, ethylene production, respiration rate, color 29 

change, firmness, and titratable acidity (TA) and soluble solid content (SSC). Surface 30 

morphology of stand-alone film and fruit surface (after applying on the plum fruit) was 31 

studied using scanning electron microscopy (SEM). Phytochemical analysis was performed 32 

during the storage period and total phenolic content (TPC), total antioxidant capacity (TAC), 33 

flavonoid content (FC) and free radical scavenging activity were determined. The rice starch 34 

composite coating was shown to be effective in reducing both weight loss (WL) and 35 

respiration rate and inhibiting the endogenous ethylene production when compared to the 36 

uncoated control fruit stored at room temperature (p<0.05). TPC, TAC, FC and free radical 37 

scavenging activity was unaffected in the coated fruit throughout the storage period (p<0.05). 38 

The findings reported in this study indicate that the RS-ι-car-FAEs coating prolongs the shelf 39 

life and maintains the overall quality of plum fruit during storage and could potentially be 40 

commercialized as a new edible coating for the plum fruit industry.  41 

Keywords: Starch; Coating; Plum; Fruit; Postharvest; Shelf-life 42 
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1. Introduction  47 

 48 

Plum is considered a climacteric fruit (Wu et al., 2011) that softens rapidly during the 49 

postharvest supply chain due to rapid senescence. Fruit softening is a natural phenomenon 50 

that progresses with storage and compromises final fruit quality leading to significant 51 

volumes of fruit being rejected at the marketplace due to firmness levels being below 52 

acceptable retail standards (Hussain et al., 2015; Paniagua et al., 2013). Therefore, new 53 

research aimed at improving the postharvest shelf life and storage quality of plum fruit is 54 

necessary and has great potential value for plum industry.  55 

Plum is an important commercial stone fruit, grown in different geographical regions 56 

globally.  Worldwide annual production currently exceeds 10 million tons (Karaca et al., 57 

2014). A number of previous studies have shown low temperature storage and 58 

transportation to be an effective means of reducing perishability of plum fruit (Hussain et 59 

al., 2015; Kumar et al., 2017; Pan et al., 2018).  However, this method of preservation 60 

often results into severe chilling injury, translucency and red pigment accumulation 61 

(bleeding) and flavor loss (Minas et al., 2013). Other techniques have been studied to 62 

improve the postharvest life of plum fruit including edible surface coatings, modified 63 

atmosphere packaging, fumigation with ethylene antagonists such as 1-MCP, salicylic 64 

acid treatment and natural signaling agents such as nitric oxide (Liu et al., 2014; 65 

Manjunatha et al., 2010; Pan et al., 2016; Singh et al., 2009). The use of edible films and 66 

coatings has recently emerged as an innovative and effective solution to extending the 67 

shelf life of fresh horticulture produce. These surface coatings extend postharvest life by 68 

regulating gaseous exchange and slowing moisture loss through the formation of cohesive 69 

molecular semipermeable network covering the fruit surface (Vargas-Torres et al., 2017).  70 

Edible coatings can also improve the texture quality of fruit (Choi et al., 2016; Karaca et 71 



al., 2014) and reduce the incidence of skin bruising during handling.  Novel coating 72 

materials previously utilised on plums include chitosan (Kumar et al., 2017), 73 

hydroxypropylmethyl cellulose (Choi et al., 2016), aloe vera (Guillén et al., 2013), 74 

xanthan and gellan gums and sodium alginate (Vargas-Torres et al., 2017). However, 75 

these combinations still have permeability and tensile strength limitations in improving 76 

the postharvest quality of plum fruit and new, more compatible biopolymer coating 77 

materials therefore need to be developed to overcome the current limitations. 78 

Rice starch is an underutilized conventional biodegradable material that has not 79 

previously been explored alone or in combination with other compatible biopolymers for 80 

its fruit coating potential. The approach of composite formulations has been investigated 81 

widely, as they often result in synergistic effects (Liu et al., 2014).  Compatibility 82 

between starch and carrageenan in coating formulations and their ability to form a strong, 83 

complex polymer network has previously been reported (Huc et al., 2014; Lascombes et 84 

al., 2017; Thakur et al., 2016). So there is no doubt in their potential to improve the 85 

postharvest stability of horticultural produce where respiration is a critical factor. Thakur 86 

et al. (2018) demonstrated that edible films manufactured from starch composite 87 

possessed significantly improved permeability and mechanical properties and can be a 88 

potential solution to improve the quality of plum fruit. Moreover, there is no evidence in 89 

the current literature of the use of rice starch-carrageenan-fatty acid esters composite 90 

materials for fruit coating applications. Therefore, the objective of this study was to 91 

investigate the coating properties of starch-ι-carrageenan coating blended with sucrose 92 

fatty acid esters and their impact on the physiology and shelf life of plum fruit. 93 

94 

95 



2. Materials and methods 96 

2.1 Materials 97 

Rice grains (Oryza sativa var. Doongara) were obtained from Sunrice (Sun Rice, Leeton 98 

Australia). The ι-carrageenan (Chondrus crispus) was purchased from Melbourne Food 99 

ingredient depot, Victoria, Australia.  Glycerol (Ajax fine-chem Pty. Ltd, Australia) was used 100 

as plasticizing agent in the film formulation.  Starch isolation and characterisation of its 101 

chemical composition is described elsewhere (Thakur et al., 2016). Sucrose fatty acid ester 102 

was purchased from Xi’an Plant Bio-Engineering Co., Ltd, China.  103 

 2.2 Preparation of film/coating solution                   104 

Based on the laboratory trials and preliminary study, the optimum volume required to coat 105 

the fruit was identified and used for subsequent coating experiment.  Rice starch (3%, w/w), 106 

ι-car (1.5%, w/w), FAEs (2%%, w/w) and glycerol (1 %, w/w) were mixed in a two-step 107 

procedure. In the first step, starch solution (2%) was prepared by heating a starch-water 108 

mixture at 85 °C using a hot plate magnetic stirrer for 15 min. In the second step ι-car gelling 109 

solution was prepared by heating the ι-car-H2O mixture at 80ºC for 20 min. until a clear 110 

transparent gel was formed. The solution from step 1 and step 2 were mixed together with a 111 

subsequent addition of FAEs and glycerol and stirred for a further 20 min.   112 

2.2.1 Formation of edible film: The final film solution (20 mL) was poured into Petri plates 113 

and dried in the oven for 24 h under controlled conditions (35ºC, RH 50%). For evaluation, 114 

dried films were peeled from the plate surface and dried in a desiccator prior to the final 115 

thickness being determined. For water vapor permeability measurement, films (three 116 

replication with six films each) were conditioned at 27ºC, RH 60% for 72 h prior to 117 

measurement. 118 



2.3 Properties of rice starch-ι-car film 119 

2.3.1 Thickness, water vapour permeability (WVP) and tensile properties  120 

Thickness of film was measured using a digital micro-meter (Mitutoyo, Co., Code No. 543-121 

551-1, Model ID-F125, 139 Japan; sensitivity= 0.001 mm). Ten measurements were taken 122 

from random positions for each film samples and mean value calculated to analyse WVP and 123 

optical properties. WVP was measured according to a previously reported method by Thakur 124 

et al. (2016). Tensile strength (TS) and elongation at break (EAB) were determined using a 125 

Texture Analyzer (LLOYD Instrument LTD, Fareham, UK). Preconditioned (60% RH) films 126 

(15 x 40 mm) were placed in the tensile grip with initial grip distance 40 mm and 1 mm/s 127 

crosshead speed. Ten samples from every single film preparation were studied for the 128 

mechanical properties of the film.  129 

2.4 Fruit coating and design of experiment 130 

Mature plum fruit (Prunus salicina) without visual defects, were collected from a local 131 

market (Central AVE. Shepparton East, NSW, Australia) and coated on the same day of 132 

purchase. A randomized experimental design, comprising 60 homogeneous lots (based on 133 

color and size) of 7 fruit each were assembled randomly. Four lots were used to measure the 134 

fruit properties at harvest (0 day) and the remaining 56 lots were divided into two groups for 135 

the following treatments in four replicates i.e., four lots (with 7 fruit per replication) from 136 

each treatment were assessed on the sampling day for the different properties. Two 137 

treatments, coated (rice starch-ι-carrageenan-FAEs) and control (without any coating) were 138 

used in this experiment and treated accordingly. For coating: cooled emulsion (0.5mL) was 139 

applied over the individual fruit using hand coating method  ensuring the whole surface of the 140 

fruit including calyx and epicalyx were coated uniformly. The coatings were then dried using 141 

hair dryer placed at a distance of 60 cm from the fruit to avoid thermal damage. After drying, 142 



the fruit were stored at 20°C/RH 55±5% and their quality monitored every third day to assess 143 

the effectiveness of applied coating on physiological parameters.  144 

2.4.1 Measurement of plum ethylene and respiration rate 145 

Plum fruit, (n=4) from each replicate were sealed in a 0.5 L hermetic glass jar (2 fruit per jar, 146 

selected randomly) with a septum and a lid for gas sampling after 2h. The jars were stored at 147 

ambient temperature of 20°C and gas sampling was carried out using a needle probe through 148 

the rubber septum. After 2h incubation, a sample of headspace gas was used to measure the 149 

rate of CO2 production. For ethylene measurement, 1 mL of gas sample was withdrawn from 150 

the vessel and inserted into a gas chromatograph (Gow-Mac 580, Bridgewater NJ) fitted with 151 

a 6’ x 1/8’’activated alumina stainless steel carbowax silico steel 80/100 column and 152 

equipped with a flame ionization detector.  Nitrogen was used as the carrier gas for all 153 

experiments. The injector, column and detector temperatures were set at 65°C, 85°C and 105 154 

°C respectively. The ethylene production rate was expressed in μL C2H4/kg h and calculated 155 

as.  156 

Ethylene rate (μ L C2H4/kg h) =  𝐶2𝐻4 (μL 𝐿−1)𝑥 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚𝐿) 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔)𝑥 𝑡𝑖𝑚𝑒 (ℎ)⁄         (1)                   157 

The respiration rate was determine by measuring CO2 in 5 mL of gas sample withdrawn from 158 

the vessel and injected into a using an ICA40 series low-volume gas analysis system 159 

(International Controlled Atmosphere Ltd., Kent, UK). Respiration rate was calculated using 160 

the following equation:  161 

CO2 (ml Kg-1h-1) = (𝐶𝑂2(%)𝑥 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚𝐿) (𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔)𝑥 𝑡𝑖𝑚𝑒 (ℎ)𝑥 100)⁄                   (2) 162 

2.4.2 Measurement of plum firmness 163 

The flesh firmness of starch uncoated and coated plums was measured using HortPlus™ 164 

Penetrometer  after 0 day, days 3, 6, 9, 12, 15, 18 and 21 days storage at 20 °C. The average 165 



of two readings from each side of the fruit was recorded. For measuring the fruit firmness, 166 

fruit skin (1 x 1cm) was peeled off using a sharp knife to expose the flesh from two ends one 167 

opposite to each other. A 7 mm diameter stainless steel probe was inserted into the fruit and 168 

corresponding values were recorded using computer software. The maximum penetration 169 

force (N) was defined as the maximum force required pushing the probe into the plum 170 

surface to a depth of 2 mm at a cross-head speed of 1 mm/s. 171 

2.4.3 Weight loss 172 

The weight loss (%) was determined by weighing the plum fruit before and after the storage 173 

period  174 

2.4.5 Measurement of color change  175 

The color of the plum surface was determined by a Chroma meter CR-400 (Konica Minolta 176 

Sensing Inc., Japan). The CIELAB software was employed to measure the L∗, a∗, and b∗ 177 

values.  178 

2.4.6 TSS and TA  179 

For the assessment of total soluble solids (TSS) and titratable acidity (TA), fruit samples 180 

were chopped into small pieces and squeezed until no more juice was released. TSS was 181 

determined with a digital hand-held refractometer (Atago PAL-1, Japan). TA was determined 182 

by titrating 5 mL of juice with 0.05 M NaOH to pH 8.2 using an automatic titrator (Mettler 183 

Toledo T50, Switzerland) and the result was expressed as a percentage of malic acid. 184 

2.5 Surface morphology (SEM) 185 

Stand-alone film and fruit surface morphology were studied by using scanning electron 186 

microscope (JEOL, JSM 6300 SEM, JEOL, and Tokyo, Japan). Film samples were stored in 187 



desiccator for 1 week to ensure the dryness (theoretical RH in desiccator 0%). For fruit, 188 

samples were freeze dried completely and stored in the desiccator prior to analysis. The 189 

microscopic analysis of film and fruit was determined by mounting the sample pieces on the 190 

copper stubs, gold coated and observed using an accelerating voltage of 10 kV under high 191 

vacuum mode. 192 

2.6 Polyphenols determination  193 

2.6.1 Determination of total polyphenolic content (TPC) 194 

A modified Folin-Ciocalteu method as described by (Bhuyan et al., 2015) was used for the 195 

determination of total polyphenolic content (TPC). Briefly, diluted juice sample (1 ml of fruit 196 

juice in 50 mL of water) was mixed with 5 mL of Folin-Ciocalteu reagent and 4 mL of 7.5% 197 

Na2CO3 solution. The mixture was left at room temperature for 1h to complete the reaction. 198 

The optical absorbance was measured at 765nm using UV-spectrophotometer (Varian 199 

Australia Pty. Ltd., Victoria, Australia). A calibration curve (R2 0.998) was constructed with 200 

ten points using Gallic acid as a pure standard. The results expressed as gallic acid 201 

equivalents (GAE) mg GAE mL-1 of fresh fruit juice sample.     202 

2.6.2 Total flavonoids content (TFC) 203 

The total flavonoid content was measured by AlCl3 colorimetric assay as described by Šamec 204 

et al. (2016) with some modifications. Briefly, to 0.5 mL of diluted sample 2 mL of H2O and 205 

0.15 mL of 5% (w/v) NaNO2 were added and left at RT for 6 minutes. Then, 0.15 mL of 10% 206 

(w/v) AlCl3 was added and left at RT for another 6 minutes. It was followed by the addition 207 

of 2 mL of 4% (w/v) NaOH and 0.7 mL of H2O with the final solution being mixed well and 208 

left at RT for a further 15 minutes before the absorbance was measured at 510 nm using a UV 209 



spectrophotometer. Rutin was used as the standard for a calibration curve (R2 0.994) and the 210 

results were expressed rutin equivalents (mg RUE mL-1 of juice sample).  211 

2. 7 Determination of antioxidant capacity  212 

2. 7.1 DPPH radical scavenging activity determination and cupric acid antioxidant 213 

capacity (CUPRAC) 214 

The DPPH (1,1-diphenyl-2-2picrylhydrazyl) radical scavenging activity and the antioxidant 215 

capacity of the plum fruit samples was determined using the assays described previously 216 

(Bhuyan et al., 2015; Jatoi et al., 2017). Briefly, 1 mL of 10mM CuCl2.2H2O was mixed with 217 

1 mL of 7.5mM neocuproine solution and 1 M NH4CH3COO solution. Filtered juice sample 218 

(0.5 mL) was added to the above solution and final volume was completed to 4.1 mL with 219 

pure distilled water. The solution was let to stand at room temperature for 1.5h to achieve 220 

equilibrium. Absorbance measurements of the resulting cuprous-neocuproine complex was 221 

measured at 450 nm against a reagent blank. Trolox was used as standard and results 222 

expressed as millimole Trolox equivalent (mg TE mL-1 juice sample). 223 

2.8 Statistical analysis  224 

Analysis of variance (ANOVA) was performed on the test data by using the SPSS software 225 

package, v. 24.0 for Windows (SPSS, Inc., Chicago, IL). Analyses of films samples were 226 

carried out in triplicate. For the fruit quality assessment, fruit samples with four replications 227 

including seven fruit per replications were used. Tukey’s test was used to examine whether 228 

the differences among the treatments were significant at p<0.05.  229 



3. Results and discussion 230 

 231 

The evaluation of coating performance under in vitro conditions (on the fruit surface) is 232 

necessary to assess their performance characteristics for future industrial applications.  It is 233 

however, equally important to understand the physical and chemical behavior of coating 234 

formulations as standalone entities in order to be able to adapt to the commercial 235 

requirements. Film thickness, tensile strength, adhesion and gas an moisture exchange 236 

characteristics may affect the coating integrity during the prolonged storage of fresh 237 

horticulture produce, therefore, films prepared from rice starch-ι-car-FAEs composite 238 

material were analyzed for physical, mechanical and barrier properties.  239 

The results showed that the final casted film has an average thickness of 0.07mm, tensile 240 

strength 253.5 N/m2, EAB 35 mm and WVP 2.8 x 10-11 gs-1m-1Pa-1 respectively. Compared to 241 

the properties of a standalone film, actual coating performance is affected by coating 242 

distribution over the fruit surface for example whether it forms a continuous uniform layer 243 

over the fruit surface (Fagundes et al., 2015). Therefore, film morphology becomes more 244 

important aspect of the analyses of film surface features. SEM images of the manufactured 245 

films showed no solid granule remnants or aggregates within their structure, indicating high 246 

miscibility of the formulation ingredients (Fig 1).  A recent study by Huc et al. (2014) 247 

reported favorable miscibility between polysaccharides and carrageenan molecules to result 248 

from the formation of a strong networking complex arising from the incorporation of 249 

carrageenan strands into the helical structures of amylose and amylopectin. RS-ι-car-FAEs 250 

films showed smooth surfaces, free of defect (pores or cracks) and no sign of phase 251 

separation. The smooth surface further reflects the stronger inter- and intra- molecular 252 

interactions between the components. In summary, these morphological observations confirm 253 



that rice starch-ι-car-FAEs composite combination resulted in a strong semi-permeable 254 

membrane with a uniform distribution over the fruit surface. 255 

3.1 Analytical determinations 256 

3.1.1 Weight loss (WL) (%) 257 

Moisture loss is an important aspect of storage and is driven by a difference in water vapour 258 

pressure between the fruit surface and the environment (Brasil and Siddiqui, 2018). Rice-ι-259 

car-FAEs treatment employed in this study showed a significant impact on the weight loss of 260 

plum fruit during the three weeks storage period (Fig 2). As expected, weight loss increased 261 

during storage for both control and coated fruit. The control fruit showed higher weight loss 262 

(1%) compared to coated fruit (<0.8%) during 21 days of storage. The reduction in the weight 263 

loss in the coated fruit was attributed to the beneficial effect of the polysaccharides-based 264 

edible coating, and has previously been demonstrated to be effective in a wide range of 265 

commercial fruit including mango, pomegranate, pineapple and strawberry (Bierhals et al., 266 

2011; Chiumarelli et al., 2010; García et al., 2001). The complex network formed between 267 

the starch-FAEs and starch with other ingredients retarded the mass loss in the plum fruit. 268 

Loss of water vapour from the fruit surface is a natural aspect of fruit metabolic processes 269 

that occur through the pores and cracks on skin. From the SEM micrographs (Fig 1) it is clear 270 

that there were some cracks at the fruit surface in the uncoated fruit which might have 271 

facilitated accelerated moisture and weight loss. In the coated fruit, the coating covers the 272 

pores and cracks, thereby limiting transpiration while allowing gaseous exchange to continue 273 

(WVP = 2.8 x 10-11 gs-1m-1Pa-1). Loss of moisture from the control fruit surface can also be 274 

explained as a poor function of cuticle wax layer, which might have lost its integrity during 275 

washing and handing thus unmasking the skin pores at some areas. Respiration has also been 276 

considered as an important factor behind the weight loss. The heat generated during the 277 

respiration process leads to temperature elevation within the fruit which in turn increases 278 



internal water vapor pressures leading to increased transpiration. Moreover, a strong 279 

correlation (R2 0.86%) exists between weight loss and respiration signifying that increased 280 

respiration rate has contributed in the weight loss throughout the storage period.  281 

 282 

3.1.2 Ethylene production rate 283 

Endogenous ethylene production is a primary characteristic of ripening in climacteric fruit. 284 

Fig 3 shows the rate of ethylene production for uncoated and coated fruit during the three 285 

weeks storage period at ambient temperature (20°C). A significant increase (p<0.05) in the 286 

ethylene production was observed from the first week (from 0.03 to 9.76 µL C2H2/Kg/h) 287 

which was 8.08 µL C2H2/Kg/h higher than coated fruit at the end of storage. These effects 288 

were similar to those obtained with other edible coatings (Martínez-Romero et al., 2017; Pan 289 

et al., 2016).  Biosynthesis of ethylene occurs as ripening progresses in the fruit and is 290 

regulated by ripening enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and 291 

oxidase. ACC synthase convert the ACC into S-adenosyl-methionine (SAM) to ACC which 292 

is subsequently converted to ethylene via the action of a second enzyme - ACC oxidase. 293 

(Wills and Golding, 2016). The decreased levels of ethylene expressed by the coated fruit 294 

signify that coating has provided an effective gas barrier between the fruit and the 295 

surrounding atmosphere. The semi anaerobic conditions formed inside the fruit might have 296 

decreased the catalytic activity of ACC oxidase thus the ethylene production was effectively 297 

maintained by the coated fruit during the storage (Both et al., 2016; Deng et al., 2017).  298 

 299 

3.1.3 Firmness  300 

Flesh firmness is one of the most noticeable physical changes used to assess the quality of the 301 

fresh produce and is closely aligned to the rate of water loss as well as metabolic changes 302 

within the fruit  including loss of membrane integrity, hydrolysis of cellulose and 303 



hemicellulose as well as depolymerisation of pectin and starch (Mditshwa et al., 2017). Flesh 304 

firmness in the control fruit declined continuously during the storage period (Fig 4a), 305 

decreasing from 2.25N (Day 3) to 0.05N (Day 21). Across the same storage period, firmness 306 

in the coated fruit remained consistently greater than the control (p<0.05), indicating that the 307 

starch composite coating had significant, beneficial impact on fruit quality. The semi-308 

permeability of membrane in the coated fruit restricted metabolic gas exchange (O2 and CO2) 309 

through the coating barrier, resulting in a slowdown in metabolic activity including the 310 

effectiveness of oxidizing enzymes leading to retention of firmness. The differential in the 311 

rate of tissue softening between treated and control fruit was greatest during the third week of 312 

storage and is consistent with previously findings by Tesfay and Magwaza (2017) and 313 

Mahfoudhi and Hamdi (2015) who concluded that oxidizing enzymes (of polygalacturonase, 314 

β-galactosidase and pectin methyl esterase) play a significant role in maintaining the firmness 315 

of the coated fruit. The activity of these enzymes could be suppressed by the internal low O2 316 

concentration in case of the coated fruit. Another important parameter that affects the fruit 317 

firmness is the loss of water during storage. Firmness results are supported by fruit weight 318 

loss % which was higher in the control fruit (R2 0.91) (Fig 4b). Similar results were observed 319 

(Paniagua et al., 2013)  who found that fruit firmness and softening is influenced by 320 

transpiration induced moisture loss. Water loss as a form of stress has the potential to elicit 321 

senescence like response, which may also explain or contribute to the induced firmness 322 

changes in these studies.  323 

 324 



3.1.4 Respiration rate  325 

Atmospheric gases, particularly O2, serve as a crucial substrate of many biochemical 326 

reactions in the fruit (Dongen and Licausi, 2015). The respiration rate for control and coated 327 

fruit is presented in Fig 5 and shows that the treatment apparently suppressed the respiration 328 

rate during storage. In general fruit metabolic process, higher the energy metabolism rate 329 

(respiration), more quickly will be the consumption of nutrients and faster the ripening rate. 330 

Differences in the respiration rate of the fruit reveal that coating was a sensitive indicator for 331 

the gas exchange abilities of edible coating.  Permeability of gases is a function of Fick’s law 332 

of diffusion and Henry’s law of solubility and can be used to express the steady state 333 

permeability of a permeate through a non-porous barrier of known thinness, hence the need to 334 

design films critically with the thickness as low as possible (Thakur et al., 2017). An 335 

impermeable coating will prevent the fruit respiration process and cause anaerobic conditions 336 

that leads to the accumulation of off-flavor volatiles (Arnon et al., 2015).  On the other hand, 337 

a film with high permeability will not sufficiently modify the atmosphere to retard the 338 

respiration (Baldwin et al., 1999). Respiration rate was lower than control fruit throughout 339 

the storage period however no statistical difference was observed until 18D (p>0.05). The 340 

possible fluctuations in the respiration graph could be due to the fact that true equilibrium of 341 

gases between system (fruit) and surrounding was hard to achieve since the fruit were 342 

continuously ripening. It is interesting to note that control and coated fruit undergo an abrupt 343 

increase during the 3rd week of storage from 24.99 to 45.09 mLCO2Kg-1h-1 and 22.06 to 344 

30.85 mLCO2Kg-1h-1 and a significant difference was observed in the control and coated fruit 345 

(p<0.05). The most possible reason for this trend could be the widening of stomatal pores due 346 

to the rapid process of ripening leading the fruit to consume more oxygen. However, no such 347 

information related to this event is available in the literature hence further study is 348 

recommended to understand the behavior of plum respiration rate under the conditions 349 



experimented in this experiment. In summary, the slow rate of fruit respiration combined 350 

with relatively low concentration of CO2 was observed due to the modified atmosphere 351 

created by the coating over the fruit surface. 352 

 353 

3.1.5 SSC & TA 354 

Sugars represent a fundamental component of fruit edible quality, predominantly conferring 355 

sweetness and importantly influencing the consumer satisfaction for plum fruit.  Organic 356 

acids, as a respiratory substrate, begin degrading as ripening progresses, resulting in 357 

increased sugar loading (Kowalczyk et al., 2017).  As shown in the Fig 6, no significant 358 

difference (p>0.05) between the SSC content of the control and coated fruit was observed 359 

during the storage period, signifying no negative impact of the coating material. From the 360 

titratable acidity results shown in Fig 6b, it could be seen that no significant difference 361 

between the treated and control fruit was observed (p>0.05) however, there was an overall 362 

decrease in TA values during 3 weeks of storage period. The decrease in TA during 363 

postharvest storage of plums has been attributed to the use of organic acids as substrate for 364 

the respiratory metabolism in the fruit (Valero et al., 2013).  365 

 366 

3.1.6 Color  367 

In the process of ripening and senescence, plum fruit color changes from light red to dark red 368 

due to the biosynthesis of anthocyanins. The variations in fruit skin color as represented by 369 

the hue angle and shown in Fig 7. Starch coating delayed the synthesis of anthocyanin in 370 

control and coated fruit without any significant differences between them (p>0.05).  The 371 

possible reason for the lower value of hueº in the coated fruit could be the suppressed 372 

metabolic activities that ultimately led to the inhibition of anthocyanin synthesis. Similar 373 



explanation has been provided by earlier by  Valero et al. (2013) who reported that edible 374 

coating delayed the color development in plum fruit.  375 

 376 

3.1.7 Total phenolic content  377 

Phenolic compounds are synthesized during maturation as secondary metabolites; however 378 

they are also synthesized during the ripening of fruit (Andrade et al., 2017). Table 1 shows 379 

the phytochemical profile of coated and control fruit analyzed on different sampling time 380 

stored for 21 days. From the data it is clear that concentrations of phenolic compounds 381 

generally decreased with the storage time regardless of the treatment. However, starch 382 

coating suppressed the decline in the phenolic content during storage. The concentration of 383 

phenolic compounds for the uncoated plums was markedly reduced for first 6 d (1.14 mg 384 

GAE. ml-1 juice) showing lowest concentration of phenolic compounds among the fruit. The 385 

decrease in the phenolic components at the end of storage could be due to the cell structural 386 

breakdown as a part of senescence during storage. Similar explanation has been provided in 387 

previous reported studies (Ghasemnezhad et al., 2013; Nadim et al., 2015) for decrease in 388 

total phenolic content in the fruit. (Kim et al., 2013) explained the activities of phenol 389 

oxidase and peroxidase for the decrease in phenolic content for the plum fruit. However, the 390 

concentration reaches to its higher content (1.74 mg GAE. ml-1 juice) at the end of 12 d and 391 

started declining when stored further. The phenolic content was higher in the coated plums 392 

during the first and last week of storage however no statistical significant differences were 393 

observed between control and coated fruit (p>0.05). The total flavonoids content of control 394 

and coated fruit was between 16.98 to 27.09 mg RT. ml-1 and 17.75 to 34.80 mg RT. ml-1 395 

juice respectively (Table 1). For coated fruit, flavonoid content was higher at the end of 396 

storage period however no significant difference (p>0.05) was observed among the treated 397 

and untreated fruit. These results signifies that suggests that modified atmosphere created by 398 



edible coating has not promoted the biosynthesis of theses secondary metabolites during 399 

storage.  400 

3.1.8 The 2, 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and reducing 401 

power 402 

The DPPH scavenging activity of uncoated and coated fruit samples are shown in table 1. 403 

Scavenging activity was reported to decline with ripening (Sivakumar et al., 2012) and 404 

similar behavior was observed in this study in the case of uncoated fruit. However, the 405 

application of rice starch coating improved the retention of scavenging activity of plum fruit 406 

stored at 20°C. A correlation between CUPRAC and TFC (R2 0.86) at the 0.05% level was 407 

observed during the storage study of plum fruit signifying that total antioxidant activity was 408 

significantly influenced by the flavonoid content of the fruit (p<0.05). On the contrary, no 409 

significant influence was found between flavonoids and free radical scavenging activity 410 

where a moderate correlation was observed (p>0.05) and a moderate correlation between 411 

TFC and DPPH (R2 0.36, 0.05%). The phytochemical profile is different in other fruit as 412 

reported by  Kim et al. (2007) who found that scavenging activity was influenced by the 413 

flavonoids content in the fruit.  414 

 415 

Conclusion  416 

Results presented in this study demonstrated that RS-ι-car-FAEs delayed the increase in 417 

respiration rate and inhibiting the ethylene production. Control fruit lost marketability within 418 

two weeks of storage due to loss of firmness while coated plums remained firm with good 419 

color for up to three weeks at room temperature for coated plums. The delay in ripening was 420 

also reflected in accumulation of phytochemicals and the concentration of phenolics, 421 



flavonoids was higher at the end of storage period. However, more future study is required to 422 

elucidate the enzymatic mechanisms involved in the delay in ripening behavior of plum fruit.  423 
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